Patents by Inventor Heike Hattendorf

Heike Hattendorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160071632
    Abstract: A method for producing a metal film from an alloy having more than 50% nickel includes the following steps: (a) the alloy is melted in volumes of more than one ton in a vacuum induction furnace, or open in an induction or arc furnace, followed by treatment in a VOD or VLF system, (b) the alloy is then poured off in blocks, electrodes or as continuous casting to form a pre-product, followed by single or multiple re-melting by VAR and/or ESU (c) the pre-product is then annealed between 800 and 1350° C. for 1-300 hours under air or protection gas, (d) the pre-product is then hot-formed between 1300 and 600° C. to reduce the thickness of the input material by the factor 1.
    Type: Application
    Filed: June 6, 2014
    Publication date: March 10, 2016
    Applicant: VDM METALS GMBH
    Inventors: Nicole DE BOER, Stefan GILGES, Heike HATTENDORF, Andreas HECKMANN
  • Publication number: 20160032425
    Abstract: A nickel-based alloy, consisting of (in mass %) 1.5-3.0% Si, 1.5-3.0% Al, and >0.1-3.0% Cr, where Al+Si+Cr is ?4.0 and ?8.0 for the contents of Si, Al, and Cr in %; 0.005-0.20% Fe, 0.01-0.20% Y, and <0.001-0.20% of one or more the elements Hf, Zr, La, Ce, Ti, where Y+0.5*Hf+Zr+1.8*Ti 0.6*(La+Ce) is ?0.02 and ?0.30 for the contents of Y, Hf, Zr, La, Ce, and Ti in %; 0.001-0.10% C; 0.0005-0.10% N; 0.001-0.20% Mn; 0.0001-0.08% Mg; 0.0001-0.010% O; max. 0.015% S; max. 0.80% Cu; Ni remainder; and the usual production-related impurities.
    Type: Application
    Filed: January 28, 2014
    Publication date: February 4, 2016
    Applicant: VDM Metals GmbH
    Inventors: Heike HATTENDORF, Frank SCHEIDE, Larry PAUL
  • Publication number: 20150305091
    Abstract: Iron-nickel-chromium-silicon alloy having (in % by weight) 34 to 42% nickel, 18 to 26% chromium, 1.0 to 2.5% silicon, and additives of 0.05 to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.01 to 0.14% carbon, 0.01 to 0.14% nitrogen, max. 0.01% sulfur, max. 0.005% B, remainder iron and the usual impurities resulting from the production process.
    Type: Application
    Filed: April 17, 2014
    Publication date: October 22, 2015
    Inventors: Heike HATTENDORF, Juergen WEBELSIEP
  • Publication number: 20150093288
    Abstract: The invention relates to a nickel-chromium alloy comprising (in wt.-%) 29 to 37% chromium, 0.001 to 1.8% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 1.00% titanium and/or 0.00 to 1.10% niobium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 12% carbon, 0.001 to 0.050% nitrogen, 0.001 to 0.030% phosphorus, 0.0001 to 0.020% oxygen, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al?30 (2a) and Fp?39.9 (3a) with Fp=Cr+0.272*Fe+2.36*Al+2.22*Si+2.48*Ti+0.374*Mo+0.538*W?11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
    Type: Application
    Filed: May 15, 2013
    Publication date: April 2, 2015
    Inventor: Heike Hattendorf
  • Publication number: 20150050182
    Abstract: A nickel-chromium-aluminum-iron alloy includes (in wt.-%) 24 to 33% chromium, 1.8 to 4.0% aluminum, 0.10 to 7.0% iron, 0.001 to 0.50% silicon, 0.005 to 2.0% manganese, 0.00 to 0.60% titanium, 0.0002 to 0.05% each of magnesium and/or calcium, 0.005 to 0.12% carbon, 0.001 to 0.050% nitrogen, 0.0001 to 0.020% oxygen, 0.001 to 0.030% phosphorus, not more than 0.010% sulfur, not more than 2.0% molybdenum, not more than 2.0% tungsten, the remainder nickel and the usual process-related impurities, wherein the following relations must be satisfied: Cr+Al?28 (2a) and Fp?39.9 (3a) with Fp=Cr+0.272* Fe+2.36*Al+2.22 *Si+2.48*Ti+0.374*Mo+0.538*W?11.8*C (4a), wherein Cr, Fe, Al, Si, Ti, Mo, W and C is the concentration of the respective elements in % by mass.
    Type: Application
    Filed: May 15, 2013
    Publication date: February 19, 2015
    Applicant: VDM Metals GmbH
    Inventor: Heike Hattendorf
  • Publication number: 20140219855
    Abstract: An iron-chromium-aluminum alloy with improved heat resistance, low chromium vaporization rate and good processability, comprising (in % by mass), 2.0 to 4.5% Al, 12 to 25% Cr, 1.0 to 4% W, 0.25 to 2.0% Nb, 0.05 to 1.2% Si, 0.001 to 0.70% Mn, 0.001 to 0.030% C, 0.0001 to 0.05% Mg, 0.0001 to 0.03% Ca, 0.001 to 0.030% P, max. 0.03% N, max. 0.01% S, remainder iron and the usual melting-related impurities.
    Type: Application
    Filed: June 6, 2012
    Publication date: August 7, 2014
    Applicant: OUTOKUMPU VDM GMBH
    Inventors: Heike Hattendorf, Bernd Kuhn, Thomas Eckardt, Tilmann Beck, Willem Joe Quadakkers, Werner Theisen, Nilofar Nabiran
  • Patent number: 8784730
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: July 22, 2014
    Assignee: Outokumpu VDM GmbH
    Inventor: Heike Hattendorf
  • Publication number: 20130323113
    Abstract: The invention relates to a nickel-chromium-aluminum-iron alloy, comprising (in wt %) 12 to 28% chromium, 1.8 to 3.0% aluminum, 1.0 to 15% iron, 0.01 to 0.5% silicon, 0.005 to 0.5% manganese, 0.01 to 0.20% yttrium, 0.02 to 0.60% titanium, 0.01 to 0.2% zirconium, 0.0002 to 0.05% magnesium, 0.0001 to 0.05% calcium, 0.03 to 0.11% carbon, 0.003 to 0.05% nitrogen, 0.0005 to 0.008% boron, 0.0001 to 0.010% oxygen, 0.001 to 0.030% phosphorus, max. 0.010% sulfur, max. 0.5% molybdenum, max. 0.5% tungsten, the remainder nickel and the common contaminants resulting from the process, wherein the following relations must be satisfied: 7.7C?x·a<1.0, wherein a=PN if PN>0 or a=0 if PN?0. Here, x=(1.0 Ti+1.06 Zr)/(0.251 Ti+0.132 Zr), PN=0.251 Ti+0.132 Zr?0.857 N, and Ti, Zr, N, and C are the concentration of the respective element in mass percent.
    Type: Application
    Filed: February 17, 2012
    Publication date: December 5, 2013
    Applicant: OUTOKUMPU VDM GMBH
    Inventors: Heike Hattendorf, Jutta Kloewer
  • Patent number: 8580190
    Abstract: An iron-chromium-aluminum alloy having a long service life and exhibiting little change in heat resistance, comprising (as percentages by weight) 4.5 to 6.5% Al, 16 to 24% Cr, 1.0 to 4.0% W, 0.05 to 0.7% Si, 0.001 to 0.5% Mn, 0.02 to 0.1% Y, 0.02 to 0.1% Zr, 0.02 to 0.1% Hf, 0.003 to 0.030% C, 0.002 to 0.03% N, a maximum of 0.01% S, and a maximum of 0.5% Cu, the remainder being iron and the usual steel production-related impurities.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: November 12, 2013
    Assignee: Outokumpu VDM GmbH
    Inventor: Heike Hattendorf
  • Publication number: 20130078136
    Abstract: Nickel-based alloy consisting of (in % by mass) Si 0.8-2.0%, Al 0.001-0.1%, Fe 0.01-0.2%, C 0.001-0.10%, N 0.0005-0.10%, Mg 0.0001-0.08%, O 0.0001-0.010%, Mn max. 0.10%, Cr max. 0.10%, Cu max. 0.50%, S max. 0.008%, balance Ni and the usual production-related impurities.
    Type: Application
    Filed: June 8, 2011
    Publication date: March 28, 2013
    Applicant: THYSSENKRUPP VDM GMBH
    Inventor: Heike Hattendorf
  • Publication number: 20120145285
    Abstract: The invention relates to a method for producing a component, made of an iron-chromium alloy that precipitates Laves phases and/or particles containing Fe and/or particles containing Cr and/or particles containing Si and/or carbides, by subjecting a semi-finished product made of the alloy to a thermomechanical treatment, wherein in a first step, the alloy is solution heat treated at temperatures?the solution heat treatment temperature and is subsequently quenched in stationary protective gas or air, moving (blown) protective gas or air, or water. In a second step, a mechanical forming of the semi-finished product in a range from 0.05 to 99% is performed, and in a subsequent step, Laves phases Fe2(M, Si) or Fe7(M, Si)6 and/or particles containing Fe and/or particles containing Cr and/or particles containing Si and/or carbides are precipitated in a specific and finely distributed manner in that the component produced from the formed semi-finished product is brought to an application temperature between 550° C.
    Type: Application
    Filed: August 18, 2010
    Publication date: June 14, 2012
    Applicant: THYSSENKRUPP VDM GMBH
    Inventors: Heike Hattendorf, Osman Ibas
  • Publication number: 20110031235
    Abstract: An iron-chromium-aluminum alloy having a long service life and exhibiting little change in heat resistance, comprising (as percentages by weight) 4.5 to 6.5% Al, 16 to 24% Cr, 1.0 to 4.0% W, 0.05 to 0.7% Si, 0.001 to 0.5% Mn, 0.02 to 0.1% Y, 0.02 to 0.1% Zr, 0.02 to 0.1% Hf, 0.003 to 0.030% C, 0.002 to 0.03% N, a maximum of 0.01% S, and a maximum of 0.5% Cu, the remainder being iron and the usual steel production-related impurities.
    Type: Application
    Filed: April 2, 2009
    Publication date: February 10, 2011
    Inventor: Heike Hattendorf
  • Publication number: 20100172790
    Abstract: The invention relates to an iron-nickel-chromium-silicon alloy comprising (in wt.-%) 19 to 34% or 42 to 87% nickel, 12 to 26% chromium, 0.75 to 2.5% silicon, and additives of 0.05% to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.04 to 0.14% carbon, 0.02 to 0.14% nitrogen, and further comprising 0.0005 to 0.07% Ca, 0.002 to 0.020% P, a maximum of 0.01% sulfur, a maximum of 0.
    Type: Application
    Filed: December 23, 2009
    Publication date: July 8, 2010
    Inventors: Heike HATTENDORF, Juergen Webelsiep
  • Publication number: 20100092749
    Abstract: Use of an iron-chromium-aluminum alloy with long service life and minor changes in heat resistance as a foil for heating elements, the foil having a thickness ranging from 0.020 to 0.300 ?m. The alloy contains (in percentages by weight) 4.5-6.5% Al and 16-24% Cr, to which are added 0.05-0.7% Si, 0.001-0.5% Mn, 0.02-0.1% Y, 0.02-0.1% Zr, 0.02-0.1% Hf, 0.003-0.020% C, maximum 0.03% N, maximum 0.01% S and maximum 0.5% Cu, the remainder being iron and the usual impurities resulting from the melting process.
    Type: Application
    Filed: January 15, 2008
    Publication date: April 15, 2010
    Applicant: THYSSENKRUPP VDM GMBH
    Inventors: Heike Hattendorf, Janine Lindemann, Rainer Rueffert
  • Publication number: 20100059145
    Abstract: The invention relates to a metal foil having (in weight %) Ni 74-90%, W 10-26%, and Al and/or Mg and/or B contents of Al >0-max. 0.02%, Mg >0-max. 0.025%, B>0-max. 0.005%.
    Type: Application
    Filed: April 14, 2008
    Publication date: March 11, 2010
    Applicants: THYSSENKRUPP VDM GMBH, ZENERGY POWER GMBH
    Inventors: Heike Hattendorf, Bodo Gehrmann, Michael Baecker, Joerg Eickemeyer
  • Publication number: 20090285717
    Abstract: Iron-nickel-chromium-silicon alloy having (in % by weight) 34 to 42% nickel, 18 to 26% chromium, 1.0 to 2.5% silicon, and additives of 0.05 to 1% Al, 0.01 to 1% Mn, 0.01 to 0.26% lanthanum, 0.0005 to 0.05% magnesium, 0.01 to 0.14% carbon, 0.01 to 0.14% nitrogen, max. 0.01% sulfur, max. 0.005% B, remainder iron and the usual impurities resulting from the production process.
    Type: Application
    Filed: January 15, 2008
    Publication date: November 19, 2009
    Inventor: Heike Hattendorf
  • Publication number: 20070110609
    Abstract: The invention relates to an iron-chromium-aluminum alloy having a good oxidation resistance, comprising (in % by mass) 2.5 to 5.0% Al, 10 to 25% Cr, 0.05 0.8% Si, and additions of >0.01 to 0.1% Y and/or >0.01 to 0.1% Hf and/or >0.01 to 0.2% Zr and/or >0.01 to 0.2% Cerium mischmetal (Ce, La, Nd) as well as production-associated impurities.
    Type: Application
    Filed: March 8, 2004
    Publication date: May 17, 2007
    Inventors: Heike Hattendorf, Angelika Kolb-Telieps, Ralf Hojda
  • Publication number: 20070041862
    Abstract: An iron chromium aluminum alloy having a long service life and comprising (in % by mass) 4 to 8% Al and 16 to 24% Cr and additions of 0.05 to 1% Si, 0.001 to 0.5% Mn, 0.02 to 0.2% Y, 0.1 to 0.3% Zr and/or 0.02 to 0.2% Hf, 0.003 to 0.05% C, 0.0002 to 0.05% Mg, 0.0002 to 0.05% Ca, max. 0.04% N, max. 0.04% P, max. 0.01% S, max. 0.5% Cu and the usual impurities resulting from the melting process, the rest being iron.
    Type: Application
    Filed: October 30, 2006
    Publication date: February 22, 2007
    Applicant: Thyssenkrupp VDM Gmbh
    Inventors: Heike Hattendorf, Angelika Kolb-Telieps
  • Publication number: 20040131493
    Abstract: The invention relates to an iron-chrome-aluminium-alloy with a high service life, comprising (in mass %)>2-3.6% aluminium and >10-20% chromium, and other added materials, namely, 0.1-1% Si, max. 0.5% Mn, 0.01-0.2% yttrium and/or 0.01-0.2% Hf and/or 0.01-0.3% Zr, max. 0.01% Mg, max. 0.01% Ca, max. 0.08% carbon, max. 0.04% nitrogen, max. 0.04% phosphorus, max. 0.01% sulphur, max. 0.05% copper and respectively max. 0.1% molybdenum and/or tungsten and the usual manufacture-related impurities, the remainder being iron.
    Type: Application
    Filed: October 27, 2003
    Publication date: July 8, 2004
    Inventors: Heike Hattendorf, Juergen Webelsiep, Hans-Joachim Balke, Michael Eckhardt