Patents by Inventor Heikichi Kamoshita

Heikichi Kamoshita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9097194
    Abstract: Control device of an internal combustion engine that determines whether or not to perform sensor element heating control of an air-fuel ratio sensor with high accuracy based on the mass of condensed water in an exhaust pipe. The control device computes the rate of change of condensed water mass in an exhaust pipe based on the saturated water vapor pressure and the water vapor partial pressure of exhaust gas, and computes the rate of change of evaporation mass in the exhaust pipe based on the amount of heat which the condensed water receives in the exhaust pipe. The control device updates the mass of condensed water based on the rate of change of condensed water mass and the rate of change of evaporation mass, and determines whether or not to perform heating control by a heating controlling unit based on the updated mass of condensed water.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: August 4, 2015
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kunihiko Suzuki, Toshio Hori, Koji Matsufuji, Kenji Takada, Heikichi Kamoshita, Hiroshi Sekine
  • Publication number: 20130024088
    Abstract: Control device of an internal combustion engine that determines whether or not to perform sensor element heating control of an air-fuel ratio sensor with high accuracy based on the mass of condensed water in an exhaust pipe. The control device computes the rate of change of condensed water mass in an exhaust pipe based on the saturated water vapor pressure and the water vapor partial pressure of exhaust gas, and computes the rate of change of evaporation mass in the exhaust pipe based on the amount of heat which the condensed water receives in the exhaust pipe. The control device updates the mass of condensed water based on the rate of change of condensed water mass and the rate of change of evaporation mass, and determines whether or not to perform heating control by a heating controlling unit based on the updated mass of condensed water.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 24, 2013
    Inventors: Kunihiko SUZUKI, Toshio Hori, Koji Matsufuji, Kenji Takada, Heikichi Kamoshita, Hiroshi Sekine
  • Patent number: 8190351
    Abstract: Disclosed is a diagnostic control apparatus for internal combustion engines capable of accurately diagnosing the presence and extent of air/fuel ratio variations in engine cylinders, even when the system has no part for detecting the air/fuel ratio in each cylinder. The diagnostic control apparatus measures the time required for the crankshaft to rotate to a specified angle for each cylinder; and based on this measured, required time, derives the 0.5 order component as the rotation fluctuation component for each two rotations of the crankshaft per each cylinder or the 1.0 order component as the rotation fluctuation component for each single rotation of the crankshaft; and also counts the number of times the 0.5 order component or 1.0 order component deviates from the preset range in the period set for each cylinder, and diagnoses an error in the output or in the air/fuel ratio for a particular cylinder when that count value exceeds a specified value.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: May 29, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Eisaku Fukuchi, Akihito Numata, Heikichi Kamoshita
  • Publication number: 20100017098
    Abstract: Disclosed is a diagnostic control apparatus for internal combustion engines capable of accurately diagnosing the presence and extent of air/fuel ratio variations in engine cylinders, even when the system has no part for detecting the air/fuel ratio in each cylinder. The diagnostic control apparatus measures the time required for the crankshaft to rotate to a specified angle for each cylinder; and based on this measured, required time, derives the 0.5 order component as the rotation fluctuation component for each two rotations of the crankshaft per each cylinder or the 1.0 order component as the rotation fluctuation component for each single rotation of the crankshaft; and also counts the number of times the 0.5 order component or 1.0 order component deviates from the preset range in the period set for each cylinder, and diagnoses an error in the output or in the air/fuel ratio for a particular cylinder when that count value exceeds a specified value.
    Type: Application
    Filed: May 21, 2009
    Publication date: January 21, 2010
    Applicant: Hitachi, Ltd.
    Inventors: Eisaku Fukuchi, Akihito Numata, Heikichi Kamoshita