Patents by Inventor Heiko Froehlich

Heiko Froehlich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11754522
    Abstract: A moisture sensor comprises a carrier element comprises an insulating material, a first and a second electrode structure at a distance from one another at the carrier element, a moisture-sensitive, dielectric layer element at a first main surface region of the carrier element and adjacent to the first and second electrode structures and a third electrode structure on a first main surface region of the moisture-sensitive, dielectric layer element, such that the moisture-sensitive, dielectric layer element is between the third electrode structure and the first electrode structure and between the third electrode structure and the second electrode structure. The first electrode structure is a first capacitor electrode and the second electrode structure is a second capacitor electrode of a measurement capacitor for capacitive moisture measurement, wherein the third electrode structure is a floating electrode structure.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: September 12, 2023
    Assignee: Infineon Technologies AG
    Inventors: Andrey Kravchenko, Heiko Froehlich, Magali Glemet, Vladislav Komenko
  • Patent number: 11719662
    Abstract: A moisture sensor comprises a carrier element comprises an insulating material, a first and a second electrode structure at a distance from one another at the carrier element, a moisture-sensitive, dielectric layer element at a first main surface region of the carrier element and adjacent to the first and second electrode structures and a third electrode structure on a first main surface region of the moisture-sensitive, dielectric layer element, such that the moisture-sensitive, dielectric layer element is between the third electrode structure and the first electrode structure and between the third electrode structure and the second electrode structure. The first electrode structure is a first capacitor electrode and the second electrode structure is a second capacitor electrode of a measurement capacitor for capacitive moisture measurement, wherein the third electrode structure is a floating electrode structure.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: August 8, 2023
    Assignee: Infineon Technologies AG
    Inventors: Andrey Kravchenko, Heiko Froehlich, Magali Glemet, Vladislav Komenko
  • Patent number: 11594654
    Abstract: A method of generating a germanium structure includes performing an epitaxial depositing process on an assembly of a silicon substrate and an oxide layer, wherein one or more trenches in the oxide layer expose surface portions of the silicon substrate. The epitaxial depositing process includes depositing germanium onto the assembly during a first phase, performing an etch process during a second phase following the first phase in order to remove germanium from the oxide layer, and repeating the first and second phases. A germanium crystal is grown in the trench or trenches. An optical device includes a light-incidence surface formed by a raw textured surface of a germanium structure obtained by an epitaxial depositing process without processing the surface of the germanium structure after the epitaxial process.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: February 28, 2023
    Assignee: Infineon Technologies AG
    Inventors: Andre Roeth, Henning Feick, Heiko Froehlich, Thoralf Kautzsch, Olga Khvostikova, Stefano Parascandola, Thomas Popp, Maik Stegemann, Mirko Vogt
  • Publication number: 20220373494
    Abstract: A moisture sensor comprises a carrier element comprises an insulating material, a first and a second electrode structure at a distance from one another at the carrier element, a moisture-sensitive, dielectric layer element at a first main surface region of the carrier element and adjacent to the first and second electrode structures and a third electrode structure on a first main surface region of the moisture-sensitive, dielectric layer element, such that the moisture-sensitive, dielectric layer element is between the third electrode structure and the first electrode structure and between the third electrode structure and the second electrode structure. The first electrode structure is a first capacitor electrode and the second electrode structure is a second capacitor electrode of a measurement capacitor for capacitive moisture measurement, wherein the third electrode structure is a floating electrode structure.
    Type: Application
    Filed: August 3, 2022
    Publication date: November 24, 2022
    Inventors: Andrey Kravchenko, Heiko Froehlich, Magali Glemet, Vladislav Komenko
  • Patent number: 11486848
    Abstract: A moisture sensor comprises a carrier element comprises an insulating material, a first and a second electrode structure at a distance from one another at the carrier element, a moisture-sensitive, dielectric layer element at a first main surface region of the carrier element and adjacent to the first and second electrode structures and a third electrode structure on a first main surface region of the moisture-sensitive, dielectric layer element, such that the moisture-sensitive, dielectric layer element is between the third electrode structure and the first electrode structure and between the third electrode structure and the second electrode structure. The first electrode structure is a first capacitor electrode and the second electrode structure is a second capacitor electrode of a measurement capacitor for capacitive moisture measurement, wherein the third electrode structure is a floating electrode structure.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: November 1, 2022
    Assignee: Infineon Technologies AG
    Inventors: Andrey Kravchenko, Heiko Froehlich, Magali Glemet, Vladislav Komenko
  • Publication number: 20220326275
    Abstract: A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Applicant: Infineon Technologies AG
    Inventors: Thoralf KAUTZSCH, Steffen BIESELT, Heiko FROEHLICH, Andre ROETH, Maik STEGEMANN, Mirko VOGT, Bernhard WINKLER
  • Patent number: 11428661
    Abstract: In accordance with an embodiment, a method for producing a moisture sensor includes providing a substrate arrangement, applying a sensor structure, applying a first cover layer on the sensor structure, locally removing the planar cover layer arrangement to expose portions of an insulation layer, applying a third cover layer on the exposed portions of the insulation layer, exposing the planar cover layer arrangement covering the sensor structure, and applying a moisture-absorbing layer element on the planar cover layer arrangement covering the sensor structure to obtain the moisture sensor.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: August 30, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Marco Haubold, Heiko Froehlich, Thoralf Kautzsch, Olga Khvostikova, Marten Oldsen, Bernhard Straub
  • Patent number: 11422151
    Abstract: A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: August 23, 2022
    Inventors: Thoralf Kautzsch, Steffen Bieselt, Heiko Froehlich, Andre Roeth, Maik Stegemann, Mirko Vogt, Bernhard Winkler
  • Publication number: 20220069156
    Abstract: A method of generating a germanium structure includes performing an epitaxial depositing process on an assembly of a silicon substrate and an oxide layer, wherein one or more trenches in the oxide layer expose surface portions of the silicon substrate. The epitaxial depositing process includes depositing germanium onto the assembly during a first phase, performing an etch process during a second phase following the first phase in order to remove germanium from the oxide layer, and repeating the first and second phases. A germanium crystal is grown in the trench or trenches. An optical device includes a light-incidence surface formed by a raw textured surface of a germanium structure obtained by an epitaxial depositing process without processing the surface of the germanium structure after the epitaxial process.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 3, 2022
    Inventors: Andre Roeth, Henning Feick, Heiko Froehlich, Thoralf Kautzsch, Olga Khvostikova, Stefano Parascandola, Thomas Popp, Maik Stegemann, Mirko Vogt
  • Patent number: 11239375
    Abstract: A method for manufacturing a pressure sensitive transistor includes forming a channel region between first and second contact regions in a semiconductor substrate, forming a first isolation layer on a surface of the semiconductor substrate, forming a sacrificial structure on the first isolation layer and above the channel region, forming a semiconductor layer on the sacrificial structure and on the first isolation layer, wherein the semiconductor layer covers the sacrificial structure, removing the sacrificial structure for providing a cavity between the substrate and the semiconductor layer, wherein the semiconductor layer forms a membrane structure and forms a control electrode of the pressure sensitive transistor, forming a second isolation layer on the membrane structure and on the exposed portion of the surface of the semiconductor substrate, and forming contacting structures for the first contact region, the second contact region and the membrane structure of the pressure sensitive transistor.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 1, 2022
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Vladislav Komenko, Heiko Froehlich, Thoralf Kautzsch, Andrey Kravchenko, Bernhard Winkler
  • Patent number: 11078072
    Abstract: A method for manufacturing a microelectromechanical systems (MEMS) device, includes forming a cavity in a bulk semiconductor substrate; defining a movably suspended mass in the bulk semiconductor substrate by one or more trenches extending from a main surface area of the bulk semiconductor substrate to the cavity; arranging a cap structure on the main surface area of the bulk semiconductor substrate; and forming a capacitive structure. Forming the capacitive structure includes arranging a first electrode structure on the movably suspended mass; and providing a second electrode structure at the cap structure such that the first electrode structure and the second electrode structure are spaced apart in a direction perpendicular to the main surface area of the bulk semiconductor substrate.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: August 3, 2021
    Inventors: Thoralf Kautzsch, Steffen Bieselt, Heiko Froehlich, Andre Roeth, Maik Stegemann, Mirko Vogt
  • Patent number: 11015980
    Abstract: An infrared radiation sensor comprises a substrate, a membrane formed in or at the substrate, a first counter electrode, a second counter electrode, and a composite comprising at least two layers of materials having different coefficients of thermal expansion. At least a portion of the membrane forms a deflectable electrode and the deflectable electrode is electrically floating. A first capacitance is formed between the deflectable electrode and the first counter electrode, and a second capacitance is formed between the deflectable electrode and the second counter electrode. The membrane comprises the composite or is supported at the substrate by the composite. The membrane comprises an absorption region configured to cause deformation of the composite by absorbing infrared radiation, the deformation resulting in a deflection of the deflectable electrode, which causes a change of the first and second capacitances.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: May 25, 2021
    Assignee: Infineon Technologies AG
    Inventors: Vladislav Komenko, Heiko Froehlich, Thoralf Kautzsch, Andrey Kravchenko
  • Patent number: 10870575
    Abstract: A semiconductor device may include a stress decoupling structure to at least partially decouple a first region of the semiconductor device and a second region of the semiconductor device. The stress decoupling structure may include a set of trenches that are substantially perpendicular to a main surface of the semiconductor device. The first region may include a micro-electro-mechanical (MEMS) structure. The semiconductor device may include a sealing element to at least partially seal openings of the stress decoupling structure.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: December 22, 2020
    Assignee: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Horst Theuss, Bernhard Knott, Thoralf Kautzsch, Mirko Vogt, Maik Stegemann, Andre Roeth, Marco Haubold, Heiko Froehlich, Wolfram Langheinrich, Steffen Bieselt
  • Publication number: 20200300886
    Abstract: A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
    Type: Application
    Filed: April 28, 2020
    Publication date: September 24, 2020
    Applicant: Infineon Technologies AG
    Inventors: Thoralf KAUTZSCH, Steffen BIESELT, Heiko FROEHLICH, Andre ROETH, Maik STEGEMANN, Mirko VOGT, Bernhard WINKLER
  • Publication number: 20200290867
    Abstract: A method for manufacturing a microelectromechanical systems (MEMS) device, includes forming a cavity in a bulk semiconductor substrate; defining a movably suspended mass in the bulk semiconductor substrate by one or more trenches extending from a main surface area of the bulk semiconductor substrate to the cavity; arranging a cap structure on the main surface area of the bulk semiconductor substrate; and forming a capacitive structure. Forming the capacitive structure includes arranging a first electrode structure on the movably suspended mass; and providing a second electrode structure at the cap structure such that the first electrode structure and the second electrode structure are spaced apart in a direction perpendicular to the main surface area of the bulk semiconductor substrate.
    Type: Application
    Filed: April 29, 2020
    Publication date: September 17, 2020
    Applicant: Infineon Technologies Dresden GmbH & Co. KG
    Inventors: Thoralf KAUTZSCH, Steffen BIESELT, Heiko FROEHLICH, Andre ROETH, Maik STEGEMANN, Mirko VOGT
  • Publication number: 20200253000
    Abstract: A light emitter device contains a heater structure configured to emit light if a predefined current flows through the heater structure. The heater structure is arranged at a heater carrier structure. The light emitter device contains an upper portion of a cavity located vertically between the heater carrier structure and a cover structure. The light emitter device contains a lower portion of the cavity located vertically between the heater carrier structure and at least a portion of a carrier substrate. The heater carrier structure contains a plurality of holes connecting the upper portion of the cavity and the lower portion of the cavity. A pressure within the cavity is less than 100 mbar.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 6, 2020
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Uwe Rudolph, Alessia Scire, Maik Stegemann, Mirko Vogt
  • Patent number: 10684306
    Abstract: A capacitive microelectromechanical device is provided. The capacitive microelectromechanical device includes a semiconductor substrate, a support structure, an electrode element, a spring element, and a seismic mass. The support structure, for example, a pole, suspension or a post, is fixedly connected to the semiconductor substrate, which may comprise silicon. The electrode element is fixedly connected to the support structure. Moreover, the seismic mass is connected over the spring element to the support structure so that the seismic mass is displaceable, deflectable or movable with respect to the electrode element. Moreover, the seismic mass and the electrode element form a capacitor having a capacitance which depends on a displacement between the seismic mass and the electrode element.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: June 16, 2020
    Assignee: Infineon Technologies AG
    Inventors: Steffen Bieselt, Heiko Froehlich, Thoralf Kautzsch, Andre Roeth, Maik Stegemann, Mirko Vogt, Bernhard Winkler
  • Patent number: 10683203
    Abstract: A microelectromechanical systems (MEMS) device is provided and includes a bulk semiconductor substrate, a cavity formed in the bulk semiconductor substrate, a movably suspended mass, a cap structure and a capacitive structure is shown. The movably suspended mass is defined in the bulk semiconductor substrate by one or more trenches extending from a main surface area of the bulk semiconductor substrate to the cavity. The cap is structure arranged on the main surface area of the bulk semiconductor substrate. The capacitive structure comprises a first electrode structure arranged on the movably suspended mass and a second electrode structure arranged at the cap structure such that the first electrode structure and the second electrode structure are spaced apart in a direction perpendicular to the main surface area of the bulk semiconductor substrate.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: June 16, 2020
    Assignee: Infineon Technologies Dresden GmbH
    Inventors: Thoralf Kautzsch, Steffen Bieselt, Heiko Froehlich, Andre Roeth, Maik Stegemann, Mirko Vogt
  • Patent number: 10681777
    Abstract: A light emitter device contains a heater structure configured to emit light if a predefined current flows through the heater structure. The heater structure is arranged at a heater carrier structure. The light emitter device contains an upper portion of a cavity located vertically between the heater carrier structure and a cover structure. The light emitter device contains a lower portion of the cavity located vertically between the heater carrier structure and at least a portion of a carrier substrate. The heater carrier structure contains a plurality of holes connecting the upper portion of the cavity and the lower portion of the cavity. A pressure within the cavity is less than 100 mbar.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: June 9, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Thoralf Kautzsch, Heiko Froehlich, Uwe Rudolph, Alessia Scire, Maik Stegemann, Mirko Vogt
  • Publication number: 20200166471
    Abstract: In accordance with an embodiment, a method for producing a moisture sensor includes providing a substrate arrangement, applying a sensor structure, applying a first cover layer on the sensor structure, locally removing the planar cover layer arrangement to expose portions of an insulation layer, applying a third cover layer on the exposed portions of the insulation layer, exposing the planar cover layer arrangement covering the sensor structure, and applying a moisture-absorbing layer element on the planar cover layer arrangement covering the sensor structure to obtain the moisture sensor.
    Type: Application
    Filed: November 22, 2019
    Publication date: May 28, 2020
    Inventors: Marco Haubold, Heiko Froehlich, Thoralf Kautzsch, Olga Khvostikova, Marten Oldsen, Bernhard Straub