Patents by Inventor Heiko Zatocil

Heiko Zatocil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8587234
    Abstract: Identification without shaft encoder of electrical equivalent circuit parameters of a three-phase asynchronous motor comprising: -standstill position search of the rotor, so that the d flux axial direction of the rotor is aligned opposite the cc axial direction of the stator; -test signal voltage supply U1d in the d flux axial direction of the motor whereby the q transverse axial direction remains without current; -measuring signal current I1d of the d flux axial direction of the motor; -identification of equivalent circuit parameters of the motor based on the test signal voltage U1d and on the measuring signal current I1d in the d flux axial direction; whereby the rotor remains torque-free. The method used to control electrical drives. An identification apparatus for a synchronous motor and a motor control device comprising the apparatus, whereby identified equivalent circuit parameters can be used to determine, optimize and monitor a motor control.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 19, 2013
    Assignee: Baumuller Nurnberg GmbH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038311
    Abstract: A method for the identification without shaft encoder of magnetomechanical characteristic quantities of a three-phase asynchronous comprising: constant voltage impression U1? in ? axial direction in order to generate a constant magnetic flux; test signal voltage supply U1? in ? axial direction of the asynchronous motor, whereby the ? axial direction remains supplied with constant current; measuring signal current measurement I1? in ? stator axial direction of the asynchronous motor; identification of mechanical characteristic quantities of the asynchronous motor based on the test signal voltage U1? and on the measuring signal current I1?, whereby the rotor can execute deflection movements. Method can also be used for control of electrical drives. An identification apparatus for the determination of mechanical characteristic quantities of an asynchronous motor and for motor control, whereby the identified characteristic quantities can be used to determine, optimize and monitor a motor control.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038303
    Abstract: Identification of electrical equivalent circuit parameters (15) of a three-phase asynchronous motor (09) without a shaft encoder. The method comprises—Assumption of a standstill position of the rotor (11);—Equidirectional test signal infeed U1?, U1? in ? and ? in the stator axis direction of the asynchronous motor (09);—Measuring of a measuring signal I1?, I1? of the ? and ? axial direction of the asynchronous motor (09); and—Identification of equivalent circuit parameters of the asynchronous motor (09) on the basis of the test signal voltages U1?, U1? and of the measuring signal currents I1?, I1?; whereby the test signal feed allows the rotor (11) to remain torque-free. Determination of equivalent circuit parameters (15) of an asynchronous motor (09) as well relates to a motor control device (35), whereby the identified equivalent circuit parameters (15) can be used for the determination, optimization and monitoring of a motor control and for control of electrical drives.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038299
    Abstract: A method for the identification without a shaft encoder of magnetomechanical characteristic quantities, in particular the mass moment of inertia J and the permanent magnetic flux ?PM between rotor and stator of a three-phase synchronous motor, comprising: —constant voltage supply U1d in the d flux axial direction; —test signal voltage supply U1q in the q transverse flux axial direction; —measuring signal current measuring I1q of the q transverse flux axial direction; —identification of magnetomechanical characteristic quantities of the synchronous motor on the basis of the test signal voltage U1q and of the measuring signal current I1q; whereby the rotor can execute deflection movements with pre-definable maximal amplitudes. Method use also for control of electrical drives.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil
  • Publication number: 20120038298
    Abstract: Identification without shaft encoder of electrical equivalent circuit parameters of a three-phase asynchronous motor comprising: standstill position search of the rotor, so that the d flux axial direction of the rotor is aligned opposite the ? axial direction of the stator; test signal voltage supply U1d in the d flux axial direction of the motor whereby the q transverse axial direction remains without current; measuring signal current I1d of the d flux axial direction of the motor; identification of equivalent circuit parameters of the motor based on the test signal voltage U1d and on the measuring signal current I1d in the d flux axial direction; whereby the rotor remains torque-free. The method used to control electrical drives. An identification apparatus for a synchronous motor and a motor control device comprising the apparatus, whereby identified equivalent circuit parameters can be used to determine, optimize and monitor a motor control.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 16, 2012
    Applicant: BAUMULLER NURNBERG GMBH
    Inventors: Sebastian Villwock, Heiko Zatocil