Patents by Inventor Heinrich Ostendarp

Heinrich Ostendarp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030148057
    Abstract: Small sheet glass plates (2) of this type with a predetermined geometrical structure are conventionally produced by being cut out of a larger sheet glass plate (1). The small sheet glass plates (2) that have been separated in this way, together with a jointing cement, in particular a solder frame (3) consisting of glass solder are then attached to other components, for example to be used in “electronic packaging”. In order to improve handling during the production and the jointing of the small sheet glass plates (2), the invention provides a larger sheet glass plate (2) which is patterned on both sides using a screen-printing or stencil-printing process and preferably using laser beam treatment along desired predetermined breaking points (5). Said larger glass plate can then be separated into smaller, patterned plates, i.e. the small sheet glass plates (2), whose shape is geometrically determined, by a simple preferably mechanical breaking process.
    Type: Application
    Filed: February 10, 2003
    Publication date: August 7, 2003
    Inventors: Christian Dietz, Robert Fuerst, Christoph Hermanns, Heinrich Ostendarp, Dietrich Mund
  • Patent number: 6502423
    Abstract: A method and apparatus is described, with which individual rectangular glass panes of thickness between 0.03 mm and 2 mm can be cut from a glass band (2) drawn vertically from a hot forming device (1) in an in-line process with reduced rejects and reduced waste. The method provides that the glass band (2) drawn vertically downward through a vertical zone is cooled below a lower cooling point of the glass and subsequently is deflected through a bending zone (3b) with a bending radius between 0.1 m and 4 m into a horizontal zone (3c) in which it is horizontally oriented. The vertical alignment of the glass band (2) in the vertical zone (3a) is continuously monitored. At least one cutting process is performed on the horizontally oriented glass band (2) in the horizontal zone (3c). The device (20) for monitoring the vertical alignment of the glass band (2) includes at least three sensors (22a, 22b, 22c; 22a′, 22b′, 22c′) that detect the glass edges These sensors can be mechanical rollers.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: January 7, 2003
    Assignee: Schott Glas
    Inventors: Heinrich Ostendarp, Andreas Berndt, Rolf Suennemann
  • Patent number: 6374640
    Abstract: A simple and economical method is described for compacting or shrinking flat glass panes. The method ensures high temperature homogeneity in the glass. First, the glass panes are cleaned and then a stack of glass panes to be treated is assembled without applying a release agent to any of the glass panes. Then the stack of glass panes is placed between ceramic panels made of silicon-infiltrated silicon carbide and this stack together with the ceramic panels is subjected to a heat treatment in a radiation furnace at temperatures ranging from 300° C. to 900° C. The ceramic panels have a thermal conductivity, which, in the region of the heat treatment temperature, is at least 5 times as large as that of the glass panes. The ratio of the total thickness of the ceramic panels to the height of the glass stack should be at least 1/&lgr;/40W/(mK), wherein &lgr; is the thermal conductivity of the ceramic panel at the temperatures of the heat treatment.
    Type: Grant
    Filed: August 2, 2000
    Date of Patent: April 23, 2002
    Assignee: Schott Glas
    Inventors: Ulrich Fotheringham, Dirk Sprenger, Heinrich Ostendarp, Holger Wegener, Wolfgang Buergel, Eva Hoelzel
  • Patent number: 6220056
    Abstract: For handling thin panes of glass or similar work pieces and products in conveyance systems, machining installations, and the like, by means of pneumatic forces, a device is proposed that is characterized by two plates (1, 2) with flat surfaces on at least one side, arranged parallel to each other at a distance (D) sufficient to hold the pane of glass (3) without contact, where the plates (1, 2) have a multitude of gas passages (4), and all the gas passages (4) of a plate (1, 2) can each be connected to a gas delivery device through one or more ducts, etc. to generate an excess pressure or a vacuum, and where at least some of the gas passages (4) are arranged in pairs opposite each other.
    Type: Grant
    Filed: November 26, 1997
    Date of Patent: April 24, 2001
    Assignee: Schott Glaswerke
    Inventor: Heinrich Ostendarp
  • Patent number: 6128925
    Abstract: The forming tool with a special structuring surface includes a reusable ceramic base tool and a replaceable metallic forming member releasably attached to the base tool and provided with a structuring surface for forming a structure in the plate glass. When the comparatively rapidly wearing forming member must be replaced, especially when structuring to form structures with sharp edges, only replacement of the metallic forming member is necessary. This two-component structure also provides additional freedom regarding selection of materials for the base tool and the structuring surface. Thus the base tool can have a comparatively smaller thermal expansion and/or conductivity and the forming member can have a comparatively higher thermal conductivity.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: October 10, 2000
    Assignee: Schott Glas
    Inventors: Heinrich Ostendarp, Marita Paasch
  • Patent number: 6112967
    Abstract: The method and apparatus for cutting through flat workpieces made of glass can cut through workpieces with greater thickness, e.g. glass panes with a thickness greater than 0.2 mm, than possible up to now with a comparable known method, without micro-fractures, glass fragments or splitter. In the method of the invention a heat radiation spot symmetric to the cutting line is produced on the workpiece. This heat radiation spot has edge portions with elevated radiation intensity and is moved along the cutting line on the workpiece and the heated section of the cutting line is subsequently cooled. A scanner motion produces the heat radiation spot so that edge portions of elevated radiation intensity coincide with a V- or U-shaped curve, which is open at the leading end of the heat radiation spot. The peak portion of the V- or U-shaped curve on the cutting line is at a temperature maximum that is under the melting point of the workpiece material.
    Type: Grant
    Filed: June 23, 1999
    Date of Patent: September 5, 2000
    Assignee: Schott Glas
    Inventors: Heinrich Ostendarp, Christoph Hermanns, Dirk Hauer, Juergen Stein, Georg Geissler, Ralf Steinfartz, Bernd Hoetzel, Andrew Blunck
  • Patent number: 5987923
    Abstract: Flat glass provided with precision structures is required for precision applications, especially for glasses with optical properties, for example for modern flat display screen glass. The process of the invention for hot forming precision structures in or on flat glass includes pressing a heated forming tool with a structuring surface into a surface of the flat glass. In this process the structuring surface of the forming tool is heated locally from the outside of the forming tool, prior to and/or during contacting of the forming tool with the glass surface until a predetermined surface depth corresponding to a height of the structures being formed has reached a process temperature at which a melting to form the structures occurs on contacting the forming tool to the glass surface. The local heating of the structuring surface (2) is performed by laser radiation which is passed through the flat glass (3) to the structuring surface (2). Alternatively an inductive or resistance heating can be performed.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: November 23, 1999
    Assignee: Schott Glas
    Inventors: Heinrich Ostendarp, Marita Paasch
  • Patent number: 5984159
    Abstract: The method and apparatus for cutting through flat workpieces made of glass can cut through workpieces with greater thickness, e.g. glass panes with a thickness greater than 0.2 mm, than possible up to now with a comparable known method, without micro-fractures, glass fragments or splitter. In the method of the invention a heat radiation spot symmetric to the cutting line is produced on the workpiece. This heat radiation spot has edge portions with elevated radiation intensity and is moved along the cutting line and/or the workpiece and the heated section of the cutting line is subsequently cooled. A scanner motion produces the heat radiation spot so that edge portions of elevated radiation intensity coincide with a V- or U-shaped curve, which is open at the leading end of the heat radiation spot. The peak portion of the V- or U-shaped curve on the cutting line is at a temperature maximum that is under the melting point of the workpiece material.
    Type: Grant
    Filed: April 14, 1998
    Date of Patent: November 16, 1999
    Assignee: Schott Glas
    Inventors: Heinrich Ostendarp, Christoph Hermanns, Dirk Hauer, Juergen Stein, Georg Geissler, Ralf Steinfartz, Bernd Hoetzel, Andrew Blunck
  • Patent number: 5948130
    Abstract: Flat glass provided with precision structures is required for precision applications, especially for glasses with optical properties, for example for modern flat display screen glass. A method for forming precision structures in or on flat glass includes filling a structuring surface of a forming tool with a paste-like material and pressing the forming tool on one side of the flat glass. The forming tool is heated locally shortly prior and/or during or after contact with the glass surface with the structuring surface from the outside until the structuring surface down to a depth predetermined by the height of the structures being formed reaches a temperature at which a melting and hardening of the paste-like material forming the structures occurs during contact with the flat glass. The local heating of the structuring surface is performed by laser radiation which is passed through the flat glass to the structuring surface. Alternatively an inductive or resistance heating can be performed.
    Type: Grant
    Filed: March 26, 1998
    Date of Patent: September 7, 1999
    Assignee: Schott Glas
    Inventor: Heinrich Ostendarp