Patents by Inventor Heinz Hofmann

Heinz Hofmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11555411
    Abstract: The present technique presents a blade 1 for a gas turbine 10. The blade 1 includes an airfoil 100 having an airfoil tip part 100a and a pressure side 102 and a suction side 104 meeting at a leading edge 106 and a trailing edge 108 and defining an internal space 100s of the airfoil 100. A squealer tip 80, 90 is arranged at the airfoil tip part 100a. The squealer tip 80, 90 comprises a suction side rail 90. The suction side rail 90 comprises a chamfer part 90x and at least one squealer tip cooling hole 99. The chamfer part 90x comprises a chamfer surface 9. An outlet 99a of the at least one squealer tip cooling hole 99 is disposed at the chamfer surface 9.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: January 17, 2023
    Assignee: DOOSAN ENERBILITY CO., LTD.
    Inventors: Herbert Brandl, Joerg Krueckels, Ulrich Rathmann, Willy Heinz Hofmann
  • Patent number: 11506062
    Abstract: A turbine blade that allows an improvement in torque and power, and a turbine and gas turbine including the same are provided. The turbine blade includes an airfoil having a suction side and a pressure side, a platform coupled to a bottom of the airfoil, and a root protruding downward from the platform and coupled to a rotor disk, wherein the airfoil includes a cooling passage formed therein and a discharge hole connected to an upper portion of the cooling passage to discharge cooling air, and the discharge hole is inclined toward a tip of the turbine blade while extending from an inside to an outside thereof.
    Type: Grant
    Filed: August 10, 2021
    Date of Patent: November 22, 2022
    Inventors: Kwang Il Kim, Jin Woo Song, Willy Heinz Hofmann, Herbert Brandl
  • Publication number: 20220098986
    Abstract: A turbine blade that allows an improvement in torque and power, and a turbine and gas turbine including the same are provided. The turbine blade includes an airfoil having a suction side and a pressure side, a platform coupled to a bottom of the airfoil, and a root protruding downward from the platform and coupled to a rotor disk, wherein the airfoil includes a cooling passage formed therein and a discharge hole connected to an upper portion of the cooling passage to discharge cooling air, and the discharge hole is inclined toward a tip of the turbine blade while extending from an inside to an outside thereof.
    Type: Application
    Filed: August 10, 2021
    Publication date: March 31, 2022
    Inventors: Kwang Il KIM, Jin Woo SONG, Willy Heinz HOFMANN, Herbert BRANDL
  • Publication number: 20220090511
    Abstract: The present technique presents a blade 1 for a gas turbine 10. The blade 1 includes an airfoil 100 having an airfoil tip part 100a and a pressure side 102 and a suction side 104 meeting at a leading edge 106 and a trailing edge 108 and defining an internal space 100s of the airfoil 100. A squealer tip 80, 90 is arranged at the airfoil tip part 100a. The squealer tip 80, 90 comprises a suction side rail 90. The suction side rail 90 comprises a chamfer part 90x and at least one squealer tip cooling hole 99. The chamfer part 90x comprises a chamfer surface 9. An outlet 99a of the at least one squealer tip cooling hole 99 is disposed at the chamfer surface 9.
    Type: Application
    Filed: August 10, 2021
    Publication date: March 24, 2022
    Inventors: Herbert BRANDL, Joerg Krueckels, Ulrich Rathmann, Willy Heinz Hofmann
  • Patent number: 10234205
    Abstract: A method for charging pallet cars of a traveling grate for the thermal treatment of bulk material includes in a first step a first layer is applied as a hearth layer on a grate surface of the pallet car. In at least one second step a second layer at the same time or successively is applied as a side layer on two opposed side walls of the pallet car and a third layer is applied as green pellet layer between the side layers and on the hearth layer. The pellets used for the grate and the side layer differ in terms of their diameter and size distribution.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: March 19, 2019
    Assignee: OUTOTEC (FINLAND) OY
    Inventors: Georg Strüber, Markus Schuster, Siegfried Schimo, Roberto Valery, Stephanie Winkler, Suvi Rannantie, Matthias Bergmann, Karl-Heinz Hofmann, Katharina Kremmer, Vincent Siauw, Basavan Salagundi, Michael Ströder, Roger Becker
  • Publication number: 20180372410
    Abstract: A method for charging pallet cars of a traveling grate for the thermal treatment of bulk material includes in a first step a first layer is applied as a hearth layer on a grate surface of the pallet car. In at least one second step a second layer at the same time or successively is applied as a side layer on two opposed side walls of the pallet car and a third layer is applied as green pellet layer between the side layers and on the hearth layer. The pellets used for the grate and the side layer differ in terms of their diameter and size distribution.
    Type: Application
    Filed: August 16, 2018
    Publication date: December 27, 2018
    Inventors: Georg Strüber, Markus Schuster, Siegfried Schimo, Roberto Valery, Stephanie Winkler, Suvi Rannantie, Matthias Bergmann, Karl-Heinz Hofmann, Katharina Kremmer, Vincent Siauw, Basavan Salagundi, Michael Ströder, Roger Becker
  • Patent number: 10065183
    Abstract: A process for preparing a catalyst provided in the form of a metal oxide catalyst having at least one element selected from Mo, Te, Nb, V, Cr, Dy, Ga, Sb, Ni, Co, Pt and Ce. The catalyst is subjected to an aftertreatment to increase the proportion of the M1 phase, by contacting the catalyst with steam at a pressure below 100 bar or by contacting the catalyst with oxygen to obtain an aftertreated catalyst. The aftertreated catalyst may be used for oxidative dehydrogenation processes.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 4, 2018
    Assignees: LINDE AKTIENGESELLSCHAFT, TECHNISCHE UNIVERSITAT MUNCHEN
    Inventors: Hans-Jörg Zander, Florian Winkler, Andreas Meiswinkel, Karl-Heinz Hofmann, Christian Thaller, Johannes A. Lercher, Daniela Hartmann, Andre Cornelis van Veen, Maria Cruz Sanchez-Sanchez
  • Patent number: 10006309
    Abstract: An exhaust diffuser for a gas turbine includes an annular duct. A row of struts is arranged in the duct. In a region downstream of the trailing edges of the struts, the cross-sectional area of the duct decreases to a local minimum and then increases again towards the outlet end of the duct. Thereby the gas flow is locally accelerated downstream of the struts. This stabilizes the boundary layer of the flow in this region and leads to a marked increase in pressure recovery for a wide range of operating conditions.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: June 26, 2018
    Assignee: ANSALDO ENERGIA IP UK LIMITED
    Inventors: Willy Heinz Hofmann, Philipp Schaefer
  • Patent number: 9896391
    Abstract: The invention relates to a process for preparing linear ?-olefins, wherein ethylene 1a is conducted into the oligomerization reactor 2 in the liquid phase. The oligomerization reactor 2 has a mechanical stirrer 2a in order to ensure optimal mixing of the liquid ethylene and of the catalyst in the liquid phase. From the top of the oligomerization reactor 2, vaporized ethylene is drawn off together with light ?-olefins and a small proportion of the organic solvent. The gas mixture drawn off from the top of the reactor 2 is condensed together with gaseous fresh ethylene 7 by means of heat exchanger 3 and separator 4. The liquid phase drawn off from the separator 4 is conducted by means of circulation pump 5a as liquid ethylene input 1a back into the oligomerization reactor 2. The liquid products of the oligomerization reaction are drawn off 8 laterally from the base of the reactor 2.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: February 20, 2018
    Assignee: LINDE AKTIENGESELLSCHAFT
    Inventors: Karl Heinz Hofmann, Hans Jorg Zander, Anton Wellenhofer, Wolfgang Muller, Anina Wohl
  • Patent number: 9896392
    Abstract: The present invention relates to a method for oligomerization of ethylene, comprising the steps: a) feeding ethylene, solvent and a catalyst composition comprising catalyst and cocatalyst into a reactor, b) oligomerizing ethylene in the reactor, c) discharging a reactor effluent comprising linear alpha-olefins including 1-butene, solvent, unconsumed ethylene dissolved in the reactor effluent, and catalyst composition from the reactor, d) separating ethylene and 1-butene collectively from the remaining reactor effluent, and e) recycling at least a part of the ethylene and the 1-butene separated in step d) into the reactor.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: February 20, 2018
    Assignees: SAUDI BASIC INDUSTRIES CORPORATION, LINDE AG
    Inventors: Andreas Meiswinkel, Wolfgang Mueller, Anina Woehl, Marco Harff, Heinz Bolt, Karl-Heinz Hofmann, Hans-Jorg Zander, Anton Wellenhofer, Abduljelil Iliyas, Shehzada Khurram, Shahid Azam, Abdullah Al-Qahtani
  • Patent number: 9765626
    Abstract: The invention refers to a gas turbine blade including an airfoil extending in radial direction from a blade root to a blade tip, defining a span ranging from 0% at the blade root to 100% at the blade tip, and extending in axial direction from a leading edge to a trailing edge, which limit a chord with an axial chord length defined by an axial length of a straight line connecting the leading edge and trailing edge of the airfoil depending on the span. The axial chord length increases at least from 80% span to 100% span.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: September 19, 2017
    Assignee: ANSALDO ENERGIA SWITZERLAND AG
    Inventors: Fabian Neubrand, Willy Heinz Hofmann
  • Patent number: 9593055
    Abstract: The present invention relates to a method for preparing linear alpha-olefins (LAO) by oligomerization of ethylene in the presence of solvent and homogenous catalyst, comprising the steps of: (i) feeding ethylene, solvent and catalyst into an oligomerization reactor, (ii) oligomerizing the ethylene in the reactor, (iii) removing a reactor outlet stream comprising solvent, linear alpha-olefins, ethylene, and catalyst from the reactor via a reactor outlet piping system, (iv) transferring the reactor outlet stream to a catalyst deactivation and removal step, and (v) deactivating and removing the catalyst from the reactor outlet stream, characterized in that at least one organic amine is added into the oligomerization reactor and/or into the reactor outlet piping system.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: March 14, 2017
    Assignees: SAUDI BASIC INDUSTRIES CORPORATION, LINDE AG
    Inventors: Vugar Aliyev, Fuad Mosa, Mohammed Al-Hazmi, Syriac Palackal, Ayed Al-Ayed, Sultan Al-Otaibi, Mohammed Zahoor, Wolfgang Müller, Peter M. Fritz, Heinz Bölt, Anton Wellenhofer, Florian Winkler, Uwe Rosenthal, Hans-Jörg Zander, Normen Peulecke, Bernd H. Müller, Karl-Heinz Hofmann, Helmut Fritz, Carsten Taube, Andreas Meiswinkel, Richard Schneider, Anina Woehl
  • Publication number: 20160207035
    Abstract: A process for preparing a catalyst provided in the form of a metal oxide catalyst having at least one element selected from Mo, Te, Nb, V, Cr, Dy, Ga, Sb, Ni, Co, Pt and Ce. The catalyst is subjected to an aftertreatment to increase the proportion of the M1 phase, by contacting the catalyst with steam at a pressure below 100 bar or by contacting the catalyst with oxygen to obtain an aftertreated catalyst. The aftertreated catalyst may be used for oxidative dehydrogenation processes.
    Type: Application
    Filed: August 7, 2014
    Publication date: July 21, 2016
    Inventors: Hans-Jörg Zander, Florian Winkler, Andreas Meiswinkel, Karl-Heinz Hofmann, Christian Thaller, Johannes A. Lercher, Daniela Hartmann, Andre Cornelis van Veen, Maria Cruz Sanchez-Sanchez
  • Patent number: 9377029
    Abstract: A blade of a turbomachine or a flying machine includes a blade airfoil extending in a radial direction from a blade root to a blade tip. The blade airfoil has an inflow-side leading edge, an outflow-side trailing edge, a pressure side and a suction side. A surface of each of the pressure side and the suction side extends between the inflow-side leading edge and the outflow-side trailing edge. The blade tip has an end face with a camber line that extends from the inflow-side leading edge to the outflow-side trailing edge. At least one tip-side recess forms a depression from the end face into the blade airfoil, the depression extending continuously from the pressure side to the suction side and having a partial length of the camber line.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: June 28, 2016
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Willy Heinz Hofmann, Josef Ballmann
  • Publication number: 20150345297
    Abstract: The invention refers to a gas turbine blade including an airfoil extending in radial direction from a blade root to a blade tip, defining a span ranging from 0% at the blade root to 100% at the blade tip, and extending in axial direction from a leading edge to a trailing edge, which limit a chord with an axial chord length defined by an axial length of a straight line connecting the leading edge and trailing edge of the airfoil depending on the span. The axial chord length increases at least from 80% span to 100% span.
    Type: Application
    Filed: March 18, 2015
    Publication date: December 3, 2015
    Inventors: Fabian NEUBRAND, Willy Heinz HOFMANN
  • Publication number: 20150203418
    Abstract: The present invention relates to a method for oligomerization of ethylene, comprising the steps: a) feeding ethylene, solvent and a catalyst composition comprising catalyst and cocatalyst into a reactor, b) oligomerizing ethylene in the reactor, c) discharging a reactor effluent comprising linear alpha-olefins including 1-butene, solvent, unconsumed ethylene dissolved in the reactor effluent, and catalyst composition from the reactor, d) separating ethylene and 1-butene collectively from the remaining reactor effluent, and e) recycling at least a part of the ethylene and the 1-butene separated in step d) into the reactor.
    Type: Application
    Filed: June 5, 2013
    Publication date: July 23, 2015
    Inventors: Andreas Meiswinkel, Wolfgang Mueller, Anina Woehl, Marco Harff, Heinz Bolt, Karl-Heinz Hofmann, Hans-Jorg Zander, Anton Wellenhofer, Abduljelil Iliyas, Shehzada Khurram, Shahid Azam, Abdullah Al-Qahtani
  • Publication number: 20150016982
    Abstract: An exhaust diffuser for a gas turbine includes an annular duct. A row of struts is arranged in the duct. In a region downstream of the trailing edges of the struts, the cross-sectional area of the duct decreases to a local minimum and then increases again towards the outlet end of the duct. Thereby the gas flow is locally accelerated downstream of the struts. This stabilizes the boundary layer of the flow in this region and leads to a marked increase in pressure recovery for a wide range of operating conditions.
    Type: Application
    Filed: September 26, 2014
    Publication date: January 15, 2015
    Inventors: Willy Heinz Hofmann, Philipp Schaefer
  • Patent number: 8720207
    Abstract: A gas turbine is disclosed which includes an annular combustion chamber defined by an inner wall and an outer wall. A stator airfoil row can be defined by an annular inner stator wall and an annular outer stator wall housing a plurality of stator airfoils, and at least a rotor airfoil row defined by an annular inner rotor wall and an annular outer rotor wall housing a plurality of rotor airfoils. A gap is arranged, for example, between at least one of the inner stator wall and the inner combustion chamber wall, and the outer stator wall and the outer combustion chamber wall, upstream of said stator airfoil row. A border of at least one of the inner and outer stator wall facing the gap can be axisymmetric.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: May 13, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Frank Gersbach, Christian Sommer, Willy Heinz Hofmann, Ulrich Steiger
  • Patent number: 8486367
    Abstract: The invention relates to a method and a device for generating hydrogen (5), wherein an input (1) comprising carbon is fed longitudinally through a tube-shaped reaction chamber (Z), together with water steam (2), and is thereby converted by steam reforming, and hydrogen (4) formed during steam reforming is continuously drawn off out of the reaction chamber (Z) through a separating wall (T), said wall being selectively hydrogen-permeable at least in segments, and at a pressure less than the pressure in the reaction chamber (Z) and greater than the ambient pressure, having greater purity than product (5), characterized in that a separating wall (T) is used, the selectively hydrogen-permeability segments thereof being disposed such that a hydrogen partial pressure drop exists over the entire surface of each of such segments between the reaction chamber side and the hydrogen extraction side (W).
    Type: Grant
    Filed: June 9, 2009
    Date of Patent: July 16, 2013
    Assignee: Linde AG
    Inventors: Karl Heinz Hofmann, Nicole Schoedel, Klaus Klapper, Axel Behrens, Roland Dittmeyer
  • Patent number: 8480985
    Abstract: A method and device for the catalytic decomposition of laughing gas in a laughing-gas-bearing gas. The method includes diluting the laughing-gas-bearing gas with a diluting gas, while forming a laughing-gas-bearing charge gas. The laughing-gas bearing charge gas is passed through a heat-exchange step where heat exchange occurs with an exhaust. A heating step occurs for occasional heating of the laughing-gas-bearing charge gas in a fixed-bed reactor for catalytic decomposition of the laughing gas. In some embodiments the diluting gas is dried, and at least a part of the exhaust from the catalytic decomposition of the laughing gas is mixed with the laughing-gas-bearing charge gas upstream of the catalytic decomposition of the laughing gas.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 9, 2013
    Assignee: Linde Aktiengesellschaft
    Inventors: Ulrike Wenning, Hans-Jörg Zander, Anton Wellenhofer, Karl-Heinz Hofmann, Wibke Korn, Franz Beran, Nicole Schödel, Wolfgang Schmehl