Patents by Inventor Helen L. Maynard

Helen L. Maynard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10460941
    Abstract: A method of processing a workpiece is disclosed, where the interior surfaces of the plasma chamber are first coated using a conditioning gas that contains the desired dopant species. A working gas, which does not contain the desired dopant species, is then introduced and energized to form a plasma. This plasma is used to sputter the desired dopant species from the interior surfaces. This dopant species is deposited on the workpiece. A subsequent implant process may then be performed to implant the dopant into the workpiece. The implant process may include a thermal treatment, a knock in mechanism, or both.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: October 29, 2019
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Siamak Salimian, Qi Gao, Helen L. Maynard
  • Publication number: 20180130659
    Abstract: A method of processing a workpiece is disclosed, where the interior surfaces of the plasma chamber are first coated using a conditioning gas that contains the desired dopant species. A working gas, which does not contain the desired dopant species, is then introduced and energized to form a plasma. This plasma is used to sputter the desired dopant species from the interior surfaces. This dopant species is deposited on the workpiece. A subsequent implant process may then be performed to implant the dopant into the workpiece. The implant process may include a thermal treatment, a knock in mechanism, or both.
    Type: Application
    Filed: March 15, 2017
    Publication date: May 10, 2018
    Inventors: Siamak Salimian, Qi Gao, Helen L. Maynard
  • Patent number: 9437432
    Abstract: A method of conformally doping a device on a semiconductor workpiece is disclosed. An oxide layer is applied to all surfaces of the device. Further, the thickness of the oxide layer on each surface is proportional to the energy that ions impact that particular surface. For example, ions strike the horizontal surfaces at nearly a normal angle and penetrate more deeply into the workpiece than ions striking the vertical surfaces. After creating an oxide layer that has a variable thickness, a subsequent dopant implant is performed. While ions strike the horizontal surfaces with more energy, these ions pass through a thicker oxide layer to penetrate the workpiece. In contrast, ions strike the vertical surfaces with less energy, but traverse a much thinner oxide layer to penetrate the workpiece. The result is a conformally doped device.
    Type: Grant
    Filed: August 31, 2015
    Date of Patent: September 6, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Helen L. Maynard, Deven Raj Mittal, Jun Seok Lee
  • Patent number: 9123509
    Abstract: Techniques for plasma processing a substrate are disclosed. In one particular exemplary embodiment, the technique may be realized with a method comprising introducing a feed gas proximate to a plasma source, where the feed gas may comprise a first and second species, where the first and second species have different ionization energies; providing a multi-level RF power waveform to the plasma source, where the multi-level RF power waveform has at least a first power level during a first pulse duration and a second power level during a second pulse duration, where the second power level may be different from the first power level; ionizing the first species of the feed gas during the first pulse duration; ionizing the second species during the second pulse duration; and providing a bias to the substrate during the first pulse duration.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: September 1, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: George D. Papasouliotis, Kamal Hadidi, Helen L. Maynard, Ludovic Godet, Vikram Singh, Timothy J. Miller, Bernard Lindsay
  • Patent number: 9093104
    Abstract: A novel technique for manufacturing bit patterned media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing bit pattern media. The technique, which may be realized as a method comprising: forming a non-catalysis region on a first portion of a catalysis layer; forming a non-magnetic separator on the non-catalysis region; and forming a magnetic active region on a second portion of the catalysis layer adjacent to the first portion of the catalysis layer.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: July 28, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Frank Sinclair, Julian G. Blake, Helen L. Maynard, Alexander C. Kontos
  • Patent number: 8679960
    Abstract: A method of processing a substrate having horizontal and non-horizontal surfaces is disclosed. The substrate is implanted with particles using an ion implanter. During the ion implant, due to the nature of the implant process, a film may be deposited on the surfaces, wherein the thickness of this film is thicker on the horizontal surfaces. The presences of this film may adversely alter the properties of the substrate. To rectify this, a second process step is performed to remove the film deposited on the horizontal surfaces. In some embodiments, an etching process is used to remove this film. In some embodiments, a material modifying step is used to change the composition of the material comprising the film. This material modifying step may be instead of, or in addition to the etching process.
    Type: Grant
    Filed: October 12, 2010
    Date of Patent: March 25, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: George D. Papasouliotis, Vikram Singh, Heyun Yin, Helen L. Maynard, Ludovic Godet
  • Patent number: 8465909
    Abstract: Various methods of utilizing the physical and chemical property differences between amorphized and crystalline silicon are used to create masks that can be used for subsequent implants. In some embodiments, the difference in film growth between amorphous and crystalline silicon is used to create the mask. In other embodiments, the difference in reflectivity or light absorption between amorphous and crystalline silicon is used to create the mask. In other embodiments, differences in the characteristics of doped and undoped silicon is used to create masks.
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: June 18, 2013
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Nicholas P. T. Bateman, Helen L. Maynard, Benjamin B. Riordon, Christopher R. Hatem, Deepak Ramappa
  • Publication number: 20120175342
    Abstract: A novel, technique: for manufacturing bit patterned media is disclosed. In one particular exemplary embodiment, the technique may be realized as a method for manufacturing hit pattern media. The technique, which may be realized as a method comprising: forming a non-catalysis region on a first portion of a catalysis layer; forming a non-magnetic separator on the non-catalysis region; and forming a magnetic active region on it second portion of the catalysis layer adjacent to the first portion of the catalysis layer.
    Type: Application
    Filed: January 3, 2012
    Publication date: July 12, 2012
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Frank Sinclair, Julian G. Blake, Helen L. Maynard, Alexander C. Kontos
  • Patent number: 8124487
    Abstract: A method is disclosed for enhancing tensile stress in the channel region of a semiconductor structure. The method includes performing a series of ion implantation steps at predetermined implant energies to implant carbon ions deep within the semiconductor structure to create a strain layer. The strain layer is annealed using a millisecond anneal process. Subsequent ion implantation steps are used to dope the source/drain region, and the source/drain extension with phosphorus ions, so that the doped regions remain above the strain layer. A second millisecond anneal step activates the source/drain region and the source/drain extension. The strain layer enhances carrier mobility within a channel region of the semiconductor structure, while also preventing diffusion of P within the structure.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: February 28, 2012
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Helen L. Maynard, Vikram Singh, Hans-Joachim L. Gossman
  • Publication number: 20110309049
    Abstract: Techniques for plasma processing a substrate are disclosed. In one particular exemplary embodiment, the technique may be realized with a method comprising introducing a feed gas proximate to a plasma source, where the feed gas may comprise a first and second species, where the first and second species have different ionization energies; providing a multi-level RF power waveform to the plasma source, where the multi-level RF power waveform has at least a first power level during a first pulse duration and a second power level during a second pulse duration, where the second power level may be different from the first power level; ionizing the first species of the feed gas during the first pulse duration; ionizing the second species during the second pulse duration; and providing a bias to the substrate during the first pulse duration.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 22, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: George D. PAPASOULIOTIS, Kamal HADIDI, Helen L. MAYNARD, Ludovic GODET, Vikram SINGH, Timothy J. MILLER, Bernard LINDSAY
  • Publication number: 20110104618
    Abstract: Various methods of utilizing the physical and chemical property differences between amorphized and crystalline silicon are used to create masks that can be used for subsequent implants. In some embodiments, the difference in film growth between amorphous and crystalline silicon is used to create the mask. In other embodiments, the difference in reflectivity or light absorption between amorphous and crystalline silicon is used to create the mask. In other embodiments, differences in the characteristics of doped and undoped silicon is used to create masks.
    Type: Application
    Filed: November 1, 2010
    Publication date: May 5, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Nicholas P.T. Bateman, Helen L. Maynard, Benjamin B. Riordon, Christopher R. Hatem, Deepak Ramappa
  • Publication number: 20110086501
    Abstract: A method of processing a substrate having horizontal and non-horizontal surfaces is disclosed. The substrate is implanted with particles using an ion implanter. During the ion implant, due to the nature of the implant process, a film may be deposited on the surfaces, wherein the thickness of this film is thicker on the horizontal surfaces. The presences of this film may adversely alter the properties of the substrate. To rectify this, a second process step is performed to remove the film deposited on the horizontal surfaces. In some embodiments, an etching process is used to remove this film. In some embodiments, a material modifying step is used to change the composition of the material comprising the film. This material modifying step may be instead of, or in addition to the etching process.
    Type: Application
    Filed: October 12, 2010
    Publication date: April 14, 2011
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: George D. Papasouliotis, Vikram Singh, Heyun Yin, Helen L. Maynard, Ludovic Godet
  • Publication number: 20100279479
    Abstract: A method is disclosed for enhancing tensile stress in the channel region of a semiconductor structure. The method includes performing one or more cold-carbon or molecular carbon ion implantation steps to implant carbon ions within the semiconductor structure to create strain layers on either side of a channel region. Raised source/drain regions are then formed above the strain layers, and subsequent ion implantation steps are used to dope the raised source/drain region. A millisecond anneal step activates the strain layers and the raised source/drain regions. The strain layers enhances carrier mobility within a channel region of the semiconductor structure, while the raised source/drain regions minimize reduction in strain in the strain layer caused by subsequent implantation of dopant ions in the raised source/drain regions.
    Type: Application
    Filed: May 1, 2009
    Publication date: November 4, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Christopher R. Hatem, Helen L. Maynard, Deepak A. Ramappa
  • Publication number: 20100155898
    Abstract: A method is disclosed for enhancing tensile stress in the channel region of a semiconductor structure. The method includes performing a series of ion implantation steps at predetermined implant energies to implant carbon ions deep within the semiconductor structure to create a strain layer. The strain layer is annealed using a millisecond anneal process. Subsequent ion implantation steps are used to dope the source/drain region, and the source/drain extension with phosphorus ions, so that the doped regions remain above the strain layer. A second millisecond anneal step activates the source/drain region and the source/drain extension. The strain layer enhances carrier mobility within a channel region of the semiconductor structure, while also preventing diffusion of P within the structure.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Helen L. Maynard, Vikram Singh, Hans-Joachim L. Gossman
  • Patent number: 7279426
    Abstract: The invention forms integrated circuit devices of similar structure and dissimilar depth, such as interconnects and inductors, simultaneously. The invention deposits a conformal polymer over an area on a substrate with vias and an area without vias. Simultaneously, cavities are formed in the areas with and without vias. The depth of the cavities formed in the areas with vias will extend deeper into the substrate than the cavities formed in areas without vias. Such occurs because the polymer deposits unevenly along the surface of the substrate and more specifically, more thinly in areas with underlying depressions. Once filled with a conductive material, cavities which extend more deeply into the substrate, which were formed in areas with vias, become inductors, and the cavities which extend less deeply into the substrate, which were formed in areas without vias, become interconnects.
    Type: Grant
    Filed: September 22, 2005
    Date of Patent: October 9, 2007
    Assignee: International Business Machines Corporation
    Inventors: Habib Hichri, Kimberly A. Larsen, Helen L. Maynard, Kevin S. Petrarca
  • Publication number: 20020029853
    Abstract: Disclosed are methods and systems for etching dielectric layers in a high density plasma etcher. A method includes providing a wafer having a photoresist mask over a dielectric layer in order to define at least one contact via hole or open area that is electrically interconnected down to the silicon substrate of the wafer. The method then proceeds to inserting the wafer into the high density plasma etcher and pulsed application a TCP power source of the high density plasma etcher. The pulsed application includes ascertaining a desired etch performance characteristic, which includes photoresist selectivity and etch rate which is associated with a continuous wave application of the TCP source. Then, selecting a duty cycle of the pulsed application of the TCP source and scaling a peak power of the pulsed application of the TCP source in order to match a cycle-averaged power that would be delivered by the continuous wave application of the TCP source.
    Type: Application
    Filed: May 30, 2001
    Publication date: March 14, 2002
    Inventors: Eric A. Hudson, Jaroslaw W. Winniczek, Joel M. Cook, Helen L. Maynard
  • Patent number: 6255221
    Abstract: Disclosed are methods and systems for etching dielectric layers in a high density plasma etcher. A method includes providing a wafer having a photoresist mask over a dielectric layer in order to define at least one contact via hole or open area that is electrically interconnected down to the silicon substrate of the wafer. The method then proceeds to inserting the wafer into the high density plasma etcher and pulsed application a TCP power source of the high density plasma etcher. The pulsed application includes ascertaining a desired etch performance characteristic, which includes photoresist selectivity and etch rate which is associated with a continuous wave application of the TCP source. Then, selecting a duty cycle of the pulsed application of the TCP source and scaling a peak power of the pulsed application of the TCP source in order to match a cycle-averaged power that would be delivered by the continuous wave application of the TCP source.
    Type: Grant
    Filed: December 17, 1998
    Date of Patent: July 3, 2001
    Assignee: Lam Research Corporation
    Inventors: Eric A. Hudson, Jaroslaw W. Winniczek, Joel M. Cook, Helen L. Maynard