Patents by Inventor Helena Ticha
Helena Ticha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8846423Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.Type: GrantFiled: July 8, 2013Date of Patent: September 30, 2014Assignee: Philips Lumileds Lighting Company LLCInventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
-
Patent number: 8748912Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.Type: GrantFiled: November 3, 2011Date of Patent: June 10, 2014Assignee: Philips Lumileds Lighting Company LLCInventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
-
Patent number: 8748921Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.Type: GrantFiled: March 13, 2009Date of Patent: June 10, 2014Assignee: Philips Lumileds Lighting Company LLCInventors: Paul S. Martin, Gerd O. Mueller, Regina B. Mueller-Mach, Helena Ticha, Ladislav Tichy
-
Publication number: 20130293145Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.Type: ApplicationFiled: July 8, 2013Publication date: November 7, 2013Inventors: Michael D. Camras, William R. Imler, Franklin J. Wall, JR., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
-
Publication number: 20120043564Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.Type: ApplicationFiled: November 3, 2011Publication date: February 23, 2012Applicants: PHILIPS LUMILEDS LIGHTING COMPANY, LLC, KONINKLIJKE PHILIPS ELECTRONICS N.V.Inventors: MICHAEL D. CAMRAS, WILLIAM R. IMLER, FRANKLIN J. WALL, JR., FRANK M. STERANKA, MICHAEL R. KRAMES, HELENA TICHA, LADISLAV TICHY, Robertus G. Alferink
-
Patent number: 8067254Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.Type: GrantFiled: January 12, 2010Date of Patent: November 29, 2011Assignee: Philips Lumileds Lighting Company LLCInventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Jr., Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
-
Publication number: 20110062469Abstract: A light emitter includes a light-emitting device (LED) die and an optical element over the LED die. The optical element includes a lens, a window element, and a bond at an interface disposed between the lens and the window element. The window element may be a wavelength converting element or an optically flat plate. The window element may be directly bonded or fused to the lens, or the window element may be bonded by one or more intermediate bonding layers to the lens. The bond between the window element and the lens may have a refractive index similar to that of the window element, the lens, or both.Type: ApplicationFiled: September 17, 2009Publication date: March 17, 2011Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: Michael D. CAMRAS, Nanze Patrick WANG, Hendrik J.B. JAGT, Helena TICHA, Ladislav TICHY
-
Publication number: 20100109568Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The optical element may be bonded to the phosphor converted light emitting devices. The optical element may be a dome mounted over the phosphor converted light emitting devices and filled with an encapsulant.Type: ApplicationFiled: January 12, 2010Publication date: May 6, 2010Applicants: KONINKLIJKE PHILIPS ELECTRONICS N.V., PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: Michael D. CAMRAS, William R. IMLER, Franklin J. WALL, JR., Frank M. STERANKA, Michael R. KRAMES, Helena TICHA, Ladislav TICHY, Robertus G. Alferink
-
Publication number: 20090173960Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.Type: ApplicationFiled: March 13, 2009Publication date: July 9, 2009Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.Inventors: Paul S. MARTIN, Gerd O. MUELLER, Regina B. MUELLER-MACH, Helena TICHA, Ladislav TICHY
-
Patent number: 7553683Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.Type: GrantFiled: June 9, 2004Date of Patent: June 30, 2009Assignee: Philips Lumiled Lighting Co., LLCInventors: Paul S. Martin, Gerd O. Mueller, Regina B. Mueller-Mach, Helena Ticha, Ladislav Tichy
-
Patent number: 7419839Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.Type: GrantFiled: November 12, 2004Date of Patent: September 2, 2008Assignee: Philips Lumileds Lighting Company, LLCInventors: Michael D. Camras, William R. Imler, Frank S. Wall, Jr, Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy
-
Publication number: 20080186702Abstract: A device is provided with an array of a plurality of phosphor converted light emitting devices (LEDs) that produce broad spectrum light. The phosphor converted LEDs may produce light with different correlated color temperature (CCT) and are covered with an optical element that assists in mixing the light from the LEDs to produce a desired correlated color temperature. The phosphor converted LEDs may also be combined in an array with color LEDs. The color LEDs may be controlled to vary their brightness such that light with an approximately continuous broad spectrum is produced. By controlling the brightness of the color LEDs, light can be produced with a fixed brightness over a large range of white points with a high color rendering quality.Type: ApplicationFiled: April 7, 2008Publication date: August 7, 2008Applicant: Lumileds Lighting U.S., LLCInventors: Michael D. Camras, William R. Imler, Franklin J. Wall, Frank M. Steranka, Michael R. Krames, Helena Ticha, Ladislav Tichy, Robertus G. Alferink
-
Publication number: 20080006840Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.Type: ApplicationFiled: September 24, 2007Publication date: January 10, 2008Applicant: PHILIPS LUMILEDS LIGHTING COMPANY, LLCInventors: Michael Camras, Gerard Harbers, William Imler, Matthijs Keuper, Paul Martin, Douglas Pocius, Frank Steranka, Helena Ticha, Ladislav Tichy, R. West
-
Patent number: 7276737Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.Type: GrantFiled: January 9, 2006Date of Patent: October 2, 2007Assignee: Philips Lumileds Lighting Company, LLCInventors: Michael D. Camras, Gerard Harbers, William R. Imler, Matthijs H. Keuper, Paul S. Martin, Douglas W. Pocius, Frank M. Steranka, Helena Ticha, Ladislav Tichy, R. Scott West
-
Publication number: 20060118805Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.Type: ApplicationFiled: January 9, 2006Publication date: June 8, 2006Inventors: Michael Camras, Gerard Harbers, William Imler, Matthijs Keuper, Paul Martin, Douglas Pocius, Frank Steranka, Helena Ticha, Ladislav Tichy, R. West
-
Publication number: 20060105478Abstract: A device is provided with at least one light emitting device (LED) die mounted on a submount with an optical element subsequently thermally bonded to the LED die. The LED die is electrically coupled to the submount through contact bumps that have a higher temperature melting point than is used to thermally bond the optical element to the LED die. In one implementation, a single optical element is bonded to a plurality of LED dice that are mounted to the submount and the submount and the optical element have approximately the same coefficients of thermal expansion. Alternatively, a number of optical elements may be used. The optical element or LED die may be covered with a coating of wavelength converting material. In one implementation, the device is tested to determine the wavelengths produced and additional layers of the wavelength converting material are added until the desired wavelengths are produced.Type: ApplicationFiled: November 12, 2004Publication date: May 18, 2006Applicant: Lumileds Lighting U.S., LLCInventors: Michael Camras, William Imler, Franklin Wall, Frank Steranka, Michael Krames, Helena Ticha, Ladislav Tichy
-
Patent number: 7009213Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.Type: GrantFiled: July 31, 2003Date of Patent: March 7, 2006Assignee: Lumileds Lighting U.S., LLCInventors: Michael D. Camras, Gerard Harbers, William R. Imler, Matthijs H. Keuper, Paul S. Martin, Douglas W. Pocius, Frank M. Steranka, Helena Ticha, Ladislav Tichy, R. Scott West
-
Publication number: 20050274967Abstract: A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.Type: ApplicationFiled: June 9, 2004Publication date: December 15, 2005Applicant: Lumileds lighting U.S., LLCInventors: Paul Martin, Gerd Mueller, Regina Mueller-Mach, Helena Ticha, Ladislav Tichy
-
Publication number: 20050023545Abstract: A device includes a light emitting semiconductor device bonded to an optical element. In some embodiments, the optical element may be elongated or shaped to direct a portion of light emitted by the active region in a direction substantially perpendicular to a central axis of the semiconductor light emitting device and the optical element. In some embodiments, the semiconductor light emitting device and optical element are positioned in a reflector or adjacent to a light guide. The optical element may be bonded to the first semiconductor light emitting device by a bond at an interface disposed between the optical element and the semiconductor light emitting device. In some embodiments, the bond is substantially free of organic-based adhesives.Type: ApplicationFiled: July 31, 2003Publication date: February 3, 2005Inventors: Michael Camras, Gerard Harbers, William Imler, Matthijs Keuper, Paul Martin, Douglas Pocius, Frank Steranka, Helena Ticha, Ladislav Tichy, R. West