Patents by Inventor Helene Duprez

Helene Duprez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11921031
    Abstract: A gas sensor comprises an enclosure configured to receive a gas. The enclosure comprises a sidewall extending, around a transverse axis, between a first wall and a second wall. The sensor also comprises a light source configured to emit a light wave that propagates in the enclosure and forms, from the light source, a first light cone. A measuring photodetector is configured to detect the light wave emitted by the light source and propagated through the enclosure. The first wall and the second wall each comprise at least one reflective surface, forming a portion of an ellipsoid of revolution. Each reflective surface is associated with a rank n, n being an integer greater than or equal to 1.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: March 5, 2024
    Assignee: ELICHENS
    Inventor: Hélène Duprez
  • Publication number: 20230296499
    Abstract: An infrared light source includes an emitting element extending as a radial plane about the emitting element's center and configured to heat up to emit infrared light. The emitting element lies in a cavity bounded by a cover, placed facing the emitting element. The cover has internal and external faces, the internal face facing the emitting element, and the external face defining an interface between the cover and a medium outside the light source. The cover occupies, parallel to a transverse axis perpendicular to the radial plane, a thickness, between the internal and external faces. The external face includes a planar central portion and at least one peripheral portion adjacent and inclined respective to the central portion. The planar central portion extends about the external face's center. In the peripheral portion, the cover's thickness decreases as a function of a distance from the central portion.
    Type: Application
    Filed: October 7, 2021
    Publication date: September 21, 2023
    Inventors: Ayrat Galisultanov, Hélène Duprez
  • Publication number: 20220214267
    Abstract: A gas sensor comprises an enclosure configured to receive a gas. The enclosure comprises a sidewall extending, around a transverse axis, between a first wall and a second wall. The sensor also comprises a light source configured to emit a light wave that propagates in the enclosure and forms, from the light source, a first light cone. A measuring photodetector is configured to detect the light wave emitted by the light source and propagated through the enclosure. The first wall and the second wall each comprise at least one reflective surface, forming a portion of an ellipsoid of revolution. Each reflective surface is associated with a rank n, n being an integer greater than or equal to 1.
    Type: Application
    Filed: April 22, 2020
    Publication date: July 7, 2022
    Inventor: Hélène Duprez
  • Publication number: 20220011222
    Abstract: A method for measuring an amount of a gaseous species present in a gas, the gaseous species absorbing light in an absorption spectral band, comprises placing the gas between a light source and a measuring photodetector. The light source is configured to emit a light wave that propagates through the gas to the measuring photodetector. The light source is activated so as to illuminate the gas, so that the light source emits a light pulse. The method also includes measuring, with the measuring photodetector, a measurement intensity of a light wave transmitted by the gas during the illumination, in a measurement spectral band. The measurement spectral band comprises the absorption spectral band. The light source is activated using a pulsed activation signal, each pulse having a specific form, notably to reduce aging of the source.
    Type: Application
    Filed: November 22, 2019
    Publication date: January 13, 2022
    Inventors: Hélène Duprez, Than Trung Le
  • Patent number: 11022547
    Abstract: A gas sensor comprises a chamber configured to receive a gas; a light source configured to emit a light wave propagating through the chamber in an emission cone; a measurement photodetector and a reference photodetector, each configured to detect a light wave emitted by the light source and having passed through the chamber. The chamber extends between two transverse walls, arranged opposite one another and connected to one another by a peripheral wall extending therebetween, about a longitudinal axis (Z), and comprising a first reflective segment configured to receive a first portion of the emission cone to reflect it toward the measurement photodetector, thus forming a measurement cone converging toward the measurement photodetector. A second reflective segment of the peripheral wall is configured to receive a second portion of the emission cone to reflect it toward the reference photodetector, thus forming a reference cone converging toward the reference photodetector.
    Type: Grant
    Filed: March 7, 2018
    Date of Patent: June 1, 2021
    Assignee: ELICHENS
    Inventor: Hélène Duprez
  • Publication number: 20210055212
    Abstract: A gas sensor comprises a chamber configured to receive a gas; a light source configured to emit a light wave propagating through the chamber in an emission cone; a measurement photodetector and a reference photodetector, each configured to detect a light wave emitted by the light source and having passed through the chamber. The chamber extends between two transverse walls, arranged opposite one another and connected to one another by a peripheral wall extending therebetween, about a longitudinal axis (Z), and comprising a first reflective segment configured to receive a first portion of the emission cone to reflect it toward the measurement photodetector, thus forming a measurement cone converging toward the measurement photodetector. A second reflective segment of the peripheral wall is configured to receive a second portion of the emission cone to reflect it toward the reference photodetector, thus forming a reference cone converging toward the reference photodetector.
    Type: Application
    Filed: March 7, 2018
    Publication date: February 25, 2021
    Inventor: Hélène Duprez
  • Patent number: 10511147
    Abstract: The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising: a III-V heterostructure gain medium (3); and an optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon. The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 17, 2019
    Assignees: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Thomas Ferrotti, Badhise Ben Bakir, Alain Chantre, Sebastien Cremer, Helene Duprez
  • Patent number: 10267989
    Abstract: A substrate locally pre-structured for the production of photonic components including a solid part made of silicon; a first localised region of the substrate, including a heat dissipation layer, produced in a localised manner on the surface of the solid part and made of a material of which the refractive index is less than that of silicon; a wave guide on the heat dissipation layer; a second localised region of the substrate, including an oxide layer produced in a localised manner on the surface of the solid part, the oxide having a heat conductivity less than that of the material of the heat dissipation layer; a wave guide on the oxide layer.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: April 23, 2019
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventors: Karim Hassan, Corrado Sciancalepore, Helene Duprez, Badhise Ben Bakir
  • Publication number: 20180278021
    Abstract: The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising: a III-V heterostructure gain medium (3); and an optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon. The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
    Type: Application
    Filed: May 30, 2018
    Publication date: September 27, 2018
    Applicants: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Thomas Ferrotti, Badhise Ben Bakir, Alain Chantre, Sebastien Cremer, Helene Duprez
  • Patent number: 10014660
    Abstract: The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising: a III-V heterostructure gain medium (3); and an optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon. The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: July 3, 2018
    Assignees: Commisariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Thomas Ferrotti, Badhise Ben Bakir, Alain Chantre, Sebastien Cremer, Helene Duprez
  • Patent number: 9899800
    Abstract: A III-V heterostructure laser device located in and/or on silicon, including a III-V heterostructure gain medium, a rib optical waveguide, located facing the gain medium and including a strip waveguide equipped with a longitudinal rib, the rib optical waveguide being located in the silicon, two sets (RBE-A, RBE-B) of Bragg gratings formed in the rib optical waveguide and located on either side of the III-V heterostructure gain medium, each set (RBE-A, RBE-B) of Bragg gratings including a first Bragg grating (RB1-A, RB1B) having a first pitch and formed in the rib and a second Bragg grating (RB2-A, RB2-B) having a second pitch different from the first pitch and formed on that side of the rib waveguide which is opposite the rib.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: February 20, 2018
    Assignees: Commissariat A L'Energie Atomique et aux Energies Alternatives, ST Microelectronics SA, ST Microelectronics (Crolles 2) SAS
    Inventors: Thomas Ferrotti, Badhise Ben Bakir, Alain Chantre, Sebastien Cremer, Helene Duprez
  • Publication number: 20170141541
    Abstract: A III-V heterostructure laser device located in and/or on silicon, including a III-V heterostructure gain medium, a rib optical waveguide, located facing the gain medium and including a strip waveguide equipped with a longitudinal rib, the rib optical waveguide being located in the silicon, two sets (RBE-A, RBE-B) of Bragg gratings formed in the rib optical waveguide and located on either side of the III-V heterostructure gain medium, each set (RBE-A, RBE-B) of Bragg gratings including a first Bragg grating (RB1-A, RB1B) having a first pitch and formed in the rib and a second Bragg grating (RB2-A, RB2-B) having a second pitch different from the first pitch and formed on that side of the rib waveguide which is opposite the rib.
    Type: Application
    Filed: November 11, 2016
    Publication date: May 18, 2017
    Applicants: Commissariat a l'energie atomique et aux energies alternatives, ST Microelectronics SA, ST Microelectronics (Crolles 2) SAS
    Inventors: Thomas FERROTTI, Badhise BEN BAKIR, Alain CHANTRE, Sebastien CREMER, Helene DUPREZ
  • Publication number: 20160124145
    Abstract: A substrate locally pre-structured for the production of photonic components including a solid part made of silicon; a first localised region of the substrate, including a heat dissipation layer, produced in a localised manner on the surface of the solid part and made of a material of which the refractive index is less than that of silicon; a wave guide on the heat dissipation layer; a second localised region of the substrate, including an oxide layer produced in a localised manner on the surface of the solid part, the oxide having a heat conductivity less than that of the material of the heat dissipation layer; a wave guide on the oxide layer.
    Type: Application
    Filed: October 15, 2015
    Publication date: May 5, 2016
    Applicant: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Karim HASSAN, Corrado SCIANCALEPORE, Helene DUPREZ, Badhise BEN BAKIR
  • Publication number: 20160056612
    Abstract: The invention relates to a III-V heterostructure laser device (1) arranged in and/or on silicon, comprising: a III-V heterostructure gain medium (3); and an optical rib waveguide (11), arranged facing the gain medium (3) and comprising a slab waveguide (15) equipped with a longitudinal rib (17), the optical rib waveguide (11) being arranged in the silicon. The optical rib waveguide (11) is oriented so that at least one Bragg grating (19, 19a, 19b) is arranged on that side (21) of the slab waveguide (15) which is proximal relative to the gain medium (3) and in that the rib (17) is placed on that side (23) of the slab waveguide (15) that is distal relative to the gain medium (3).
    Type: Application
    Filed: August 17, 2015
    Publication date: February 25, 2016
    Applicants: Commissariat A L'Energie Atomique et aux Energies Alternatives, STMICROELECTRONICS SA, STMICROELECTRONICS (CROLLES 2) SAS
    Inventors: Thomas Ferrotti, Badhise Ben Bakir, Alain Chantre, Sebastien Cremer, Helene Duprez