Patents by Inventor Helge Jaensch
Helge Jaensch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11318451Abstract: Processes are provided for preparing molecular sieves of framework structure MEI, TON, MRE, MWW, MFS, MOR, FAU, EMT, or MSE. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of cationic surfactants having a quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars and combinations thereof.Type: GrantFiled: August 20, 2019Date of Patent: May 3, 2022Assignee: ExxonMobil Research & Engineering CompanyInventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi, Brandon J. O'Neill
-
Patent number: 11318450Abstract: Processes are provided for preparing molecular sieves. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of nonionic surfactants, anionic surfactants, sugars and combinations thereof.Type: GrantFiled: August 20, 2019Date of Patent: May 3, 2022Assignee: ExxonMobil Research & Engineering CompanyInventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi
-
Patent number: 11161812Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: GrantFiled: April 18, 2017Date of Patent: November 2, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jörg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton
-
Patent number: 11111153Abstract: Processes are provided for preparing molecular sieves for use as catalysts. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier which may be selected from cationic surfactants having a single quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars, and combinations thereof.Type: GrantFiled: August 20, 2019Date of Patent: September 7, 2021Assignee: ExxonMobil Research and Engineering CompanyInventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi
-
Patent number: 11014883Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: GrantFiled: April 18, 2017Date of Patent: May 25, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jörg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton
-
Patent number: 10994264Abstract: Catalysts and processes for producing catalysts for neopentane production are provided herein. A process includes reducing a catalyst precursor comprising a transition metal and an inorganic support at a temperature less than 500° C. to produce a catalyst. Also provided herein are processes to produce neopentane using the catalysts described herein and neopentane compositions produced therefrom.Type: GrantFiled: April 22, 2019Date of Patent: May 4, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Etienne Mazoyer, Kun Wang, Helge Jaensch
-
Patent number: 10870610Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.Type: GrantFiled: August 18, 2017Date of Patent: December 22, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
-
Patent number: 10857527Abstract: The invention relates to poly oxometalates represented by the formula (An)m+{M?s[M?M15X10OyRzHq]}m? or solvates thereof, corresponding supported polyoxometalates, and processes for their preparation, as well as corresponding metal-clusters, optionally in the form of a dispersion in a liquid carrier medium or immobilized on a solid support, and processes for their preparation, as well as their use in reductive conversion of organic substrate.Type: GrantFiled: January 19, 2017Date of Patent: December 8, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Ulrich Kortz, Yixian Xiang, Zhengguo Lin, Peng Yang, Helge Jaensch, Wassim W. Ayass
-
Patent number: 10626064Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.Type: GrantFiled: April 22, 2019Date of Patent: April 21, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
-
Publication number: 20200062604Abstract: Processes are provided for preparing molecular sieves for use as catalysts. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier which may be selected from cationic surfactants having a single quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars, and combinations thereof.Type: ApplicationFiled: August 20, 2019Publication date: February 27, 2020Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi
-
Publication number: 20200063042Abstract: Methods are provided for using a molecular sieve catalyst for dewaxing formed using a synthesis mixture comprising a morphology modifier. The catalyst may be used, for example, for production of a lubricant base stock. For example, ZSM-48 crystals formed using the morphology modifier (and/or formulated catalysts made using such crystals) can have an increased activity and/or can provide an improved yield during catalytic dewaxing of lubricant base stocks.Type: ApplicationFiled: August 14, 2019Publication date: February 27, 2020Inventors: Preeti Kamakoti, Scott J. Weigel, Stephen J. McCarthy, Shifang L. Luo, Sina Sartipi, Martine Dictus, Marc H. Anthonis, Helge Jaensch
-
Publication number: 20200061592Abstract: Processes are provided for preparing molecular sieves. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of nonionic surfactants, anionic surfactants, sugars and combinations thereof.Type: ApplicationFiled: August 20, 2019Publication date: February 27, 2020Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi
-
Publication number: 20200061593Abstract: Processes are provided for preparing molecular sieves of framework structure MEI, TON, MRE, MWW, MFS, MOR, FAU, EMT, or MSE. The process involves preparing a synthesis mixture for the molecular sieve wherein the synthesis mixture includes a morphology modifier L selected from the group consisting of cationic surfactants having a quaternary ammonium group comprising at least one hydrocarbyl group having at least 12 carbon atoms, nonionic surfactants, anionic surfactants, sugars and combinations thereof.Type: ApplicationFiled: August 20, 2019Publication date: February 27, 2020Inventors: Preeti Kamakoti, Scott J. Weigel, Karl G. Strohmaier, Helge Jaensch, Marc H. Anthonis, Martine Dictus, Brita Engels, Darryl D. Lacy, Sina Sartipi, Brandon J. O'Neill
-
Publication number: 20190367429Abstract: Processes for producing neopentane are disclosed herein. Processes comprise demethylating a C6-C8 alkane within a shell and tube reactor to produce a demethylation product including at least 10 wt % neopentane based on the weight of the demethylation product.Type: ApplicationFiled: April 22, 2019Publication date: December 5, 2019Inventors: Etienne Mazoyer, Kevin B. Daly, Helge Jaensch, James R. Lattner
-
Publication number: 20190366306Abstract: Catalysts and processes for producing catalysts for neopentane production are provided herein. A process includes reducing a catalyst precursor comprising a transition metal and an inorganic support at a temperature less than 500° C. to produce a catalyst. Also provided herein are processes to produce neopentane using the catalysts described herein and neopentane compositions produced therefrom.Type: ApplicationFiled: April 22, 2019Publication date: December 5, 2019Inventors: Etienne Mazoyer, Kun Wang, Helge Jaensch
-
Patent number: 10487023Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.Type: GrantFiled: August 18, 2017Date of Patent: November 26, 2019Assignee: ExxonMobil Chemical Patents Inc.Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
-
Publication number: 20190225561Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating isooctane to produce neopentane. The isooctane may be provided by the alkylation of isobutane with butylenes.Type: ApplicationFiled: August 18, 2017Publication date: July 25, 2019Inventors: Kun Wang, Lorenzo C. DeCaul, Steven W. Levine, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
-
Publication number: 20190169092Abstract: Disclosed herein are processes for producing neopentane. The processes generally relate to demethylating neohexane and/or neoheptane to produce neopentane. The neohexane and/or neoheptane may be provided by the isomerization of C6-C7 paraffins.Type: ApplicationFiled: August 18, 2017Publication date: June 6, 2019Inventors: Kun Wang, Lorenzo C. DeCaul, Michele L. Paccagnini, Etienne Mazoyer, James R. Lattner, Helge Jaensch, Ali A. Kheir
-
Publication number: 20190152911Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: ApplicationFiled: April 18, 2017Publication date: May 23, 2019Inventors: Jörg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton
-
Publication number: 20190135749Abstract: Disclosed are novel processes for the production of cyclic imide compounds such as N-hydroxyphthalimide (NHPI). The processes may be particularly well-suited for commercial-scale production of cyclic imides such as NHPI. Such cyclic imide compounds are suitable for use as oxidation catalysts, and specifically may be used to oxidize cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide. Such an oxidation may be particularly useful in a process for the production of phenol and/or cyclohexanone from benzene via a process comprising hydroalkylation of benzene to cyclohexylbenzene, oxidation of the cyclohexylbenzene to cyclohexyl-1-phenyl-1-hydroperoxide, and cleavage of the cyclohexyl-1-phenyl-1-hydroperoxide to phenol and cyclohexanone. The cyclic imide production process may advantageously include water washing and reactant recovery steps to maximize purity and yield.Type: ApplicationFiled: April 18, 2017Publication date: May 9, 2019Inventors: Jorg F. W. Weber, Helge Jaensch, Andrew R. Witt, Christopher L. Becker, Kirk C. Nadler, Kendele S. Galvan, Amy B. Batton