Patents by Inventor Hellmut Fritzsche

Hellmut Fritzsche has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7923341
    Abstract: A method for passivating short circuit defects in a thin film large area photovoltaic device in accordance with an exemplary embodiment is provided. The method employs a passivation agent and a counter electrode disposed in said passivation agent. The method includes controlling an application of current between the substrate of said photovoltaic device and said counter electrode so as to ensure high selectivity of modification of a transparent conductive oxide material of said photovoltaic module adjacent said short circuit defect, while leaving the transparent conductive oxide material of said photovoltaic module of non-defect areas in its unmodified form.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: April 12, 2011
    Assignee: United Solar Ovonic LLC
    Inventors: Greg DeMaggio, Hellmut Fritzsche, Ginger Pietka
  • Publication number: 20090246907
    Abstract: A method for passivating short circuit defects in a thin film large area photovoltaic device in accordance with an exemplary embodiment is provided. The method employs a passivation agent and a counter electrode disposed in said passivation agent. The method includes controlling an application of current between the substrate of said photovoltaic device and said counter electrode so as to ensure high selectivity of modification of a transparent conductive oxide material of said photovoltaic module adjacent said short circuit defect, while leaving the transparent conductive oxide material of said photovoltaic module of non-defect areas in its unmodified form.
    Type: Application
    Filed: June 3, 2009
    Publication date: October 1, 2009
    Inventors: Greg DeMaggio, Hellmut Fritzsche, Ginger Pietka
  • Patent number: 5596522
    Abstract: A unique class of microcrystalline semiconductor materials which can be modulated, within a crystalline phase, to assume any one of a large dynamic range of different Fermi level positions while maintaining a substantially constant band gap over the entire range, even after a modulating field has been removed. A solid state, directly overwritable, electronic and optical, non-volatile, high density, low cost, low energy, high speed, readily manufacturable, multibit single cell memory based upon the novel switching characteristics provided by said unique class of semiconductor materials, which memory exhibits orders of magnitude higher switching speeds at remarkably reduced energy levels. The novel memory of the instant invention is in turn characterized, inter alia, by numerous stable and non-volatile detectable configurations of local atomic order, which configurations can be selectively and repeatably accessed by input signals of varying levels.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: January 21, 1997
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Stephen J. Hudgens, David Strand, Wolodymyr Czubatyj, Jesus Gonzalez-Hernandez, Hellmut Fritzsche, Quiyi Ye, Sergey A. Kostylev, Benjamin S. Chao
  • Patent number: 5591501
    Abstract: A phase change optical recording medium which includes 1) a substrate having a planar surface; and 2) a plurality of discrete data recording points deposited upon the substrate. The discrete data recording points are formed from a phase change material which changes from a state of a first relative order to a state of a second relative order and visa versa upon the application of optical beam energy. Preferably the phase change material forming the plurality of discrete data recording points is deposited within individual cavities embossed into the surface of the substrate. More preferably the individual cavities are cylindrical or parabolic (bowl shaped) cavities having their central axis perpendicular to the plane of the surface of the substrate.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: January 7, 1997
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Stanford R. Ovshinsky, Hellmut Fritzsche
  • Patent number: 5335219
    Abstract: A unique class of microcrystalline semiconductor materials which can be modulated, within a crystalline phase, to assume any one of a large dynamic range of different Fermi level positions while maintaining a substantially constant band gap over the entire range, even after a modulating field has been removed. A solid state, directly overwritable, electronic and optical, non-volatile, high density, low cost, low energy, high speed, readily manufacturable, multibit single cell memory based upon the novel switching characteristics provided by said unique class of semiconductor materials, which memory exhibits orders of magnitude higher switching speeds at remarkably reduced energy levels. The novel memory of the instant invention is in turn characterized, inter alia, by numerous stable and non-volatile detectable configurations of local atomic order, which configurations can be selectively and repeatably accessed by input signals of varying levels.
    Type: Grant
    Filed: September 30, 1991
    Date of Patent: August 2, 1994
    Inventors: Stanford R. Ovshinsky, Stephen J. Hudgens, David A. Strand, Wolodymyr Czubatyj, Jesus Gonzalez-Hernandez, Hellmut Fritzsche, Qiuyi Ye, Sergey A. Kostylev, Benjamin S. Chao
  • Patent number: 4723994
    Abstract: A method of forming a magnetic material. The magnetic material is a solid mass of grains, and has magnetic parameters characterized by: (1) a maximum magnetic energy product, (BH).sub.max, greater than 15 megagaussoersteds; and (2) a remanence greater than 9 kilogauss. The magnetic material is prepared by a two step solidification, heat treatment process. The solidification process is carried out by: (a) providing a molten precursor alloy; (b) atomizing the molten alloy through nozzle means to form individual droplets of the molten alloy; and (c) quenching the droplets of the molten alloy to form solid particles of the alloy. The solid particles have a morphology characterized as being one or more of (i) amorphous; (ii) microcrystalline; or (iii) polycrystalline. The grains within the solid have, at this stage of the process, an average grain characteristic dimension less than that of the heat treated magnetic material.
    Type: Grant
    Filed: October 17, 1986
    Date of Patent: February 9, 1988
    Assignee: Ovonic Synthetic Materials Company, Inc.
    Inventors: Stanford R. Ovshinsky, Hellmut Fritzsche, Julius J. Harwood, Alan M. Kadin, John E. Keem
  • Patent number: 4620208
    Abstract: A high performance, small area thin film transistor has a drain region, an insulating layer, and a source region at least portions of the edge of which form a non-coplanar surface with respect to a substrate. The insulative layer is formed in between the source and drain regions. A deposited semiconductor overlies the non-coplanar surface to form a current conduction channel between the drain and source. A gate insulator and gate electrode overly at least a portion of the deposited semiconductor adjacent thereto. The length of the current conduction channel is determined by the thickness of the insulative layer and therefore can be made short without precision photolithography. The non-coplanar surface can be formed by utilizing a dry process to simultaneously etch through several layers in a continuous one-step process. A second dielectric layer may be formed above the three previous layers.
    Type: Grant
    Filed: November 8, 1983
    Date of Patent: October 28, 1986
    Assignee: Energy Conversion Devices, Inc.
    Inventors: Hellmut Fritzsche, Robert R. Johnson