Patents by Inventor Helmar G. Adler

Helmar G. Adler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6955579
    Abstract: A method of producing a ceramic metal halide discharge lamp having a monolithic seal between a sapphire (single crystal alumina) arc tube and a polycrystalline alumina (PCA) end cap. The method includes the steps of providing an arc tube of fully dense sapphire and providing an end cap made of unsintered compressed polycrystalline alumina powder doped with magnesium oxide and yttrium oxide. The end cap is heated until it is presintered to remove organic binder material at a low temperature relative to the sintering temperature. The presintered end cap is placed on an end portion of the arc tube to form a close interface between the two. The presintered end cap and adjacent arc tube are then heated to until the end cap is fully sintered onto the arc tube and the sapphire tube grows into the end cap. A monolithic seal is formed along the interface between the end cap and the arc tube as the sapphire tube grows into the polycrystalline alumina end cap.
    Type: Grant
    Filed: March 19, 2004
    Date of Patent: October 18, 2005
    Assignee: Osram Sylvania Inc.
    Inventors: Arlene Hecker, George C. Wei, Helmar G. Adler, Dieter Lang
  • Patent number: 6873108
    Abstract: A ceramic metal halide discharge lamp may be made having a monolithic seal between a sapphire arc tube and a polycrystalline alumina cap. The lamp is made by providing an arc tube of fully dense sapphire and providing a cap made of unsintered compressed polycrystalline alumina doped with magnesium oxide and yttrium oxide. The cap is presintered to remove binder material at a low temperature. The presintered cap is placed on an end of the arc tube to form a close interface. The presintered cap and arc tube are then heated to until the cap is fully sintered onto the arc tube and the sapphire tube grows into the cap. A monolithic seal is formed along the interface as the sapphire grows into the polycrystalline alumina.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: March 29, 2005
    Assignee: Osram Sylvania Inc.
    Inventors: Arlene Hecker, George C. Wei, Helmar G. Adler, Dieter Lang
  • Publication number: 20040185741
    Abstract: A method of producing a ceramic metal halide discharge lamp having a monolithic seal between a sapphire (single crystal alumina) arc tube and a polycrystalline alumina (PCA) end cap. The method includes the steps of providing an arc tube of fully dense sapphire and providing an end cap made of unsintered compressed polycrystalline alumina powder doped with magnesium oxide and yttrium oxide. The end cap is heated until it is presintered to remove organic binder material at a low temperature relative to the sintering temperature. The presintered end cap is placed on an end portion of the arc tube to form a close interface between the two. The presintered end cap and adjacent arc tube are then heated to until the end cap is fully sintered onto the arc tube and the sapphire tube grows into the end cap. A monolithic seal is formed along the interface between the end cap and the arc tube as the sapphire tube grows into the polycrystalline alumina end cap.
    Type: Application
    Filed: March 19, 2004
    Publication date: September 23, 2004
    Inventors: Arlene Hecker, George C. Wei, Helmar G. Adler, Dieter Lang
  • Publication number: 20030052605
    Abstract: A method of producing a ceramic metal halide discharge lamp having a monolithic seal between a sapphire (single crystal alumina) arc tube and a polycrystalline alumina (PCA) end cap. The method includes the steps of providing an arc tube of fully dense sapphire and providing an end cap made of unsintered compressed polycrystalline alumina powder doped with magnesium oxide and yttrium oxide. The end cap is heated until it is presintered to remove organic binder material at a low temperature relative to the sintering temperature. The presintered end cap is placed on an end portion of the arc tube to form a close interface between the two. The presintered end cap and adjacent arc tube are then heated to until the end cap is fully sintered onto the arc tube and the sapphire tube grows into the end cap. A monolithic seal is formed along the interface between the end cap and the arc tube as the sapphire tube grows into the polycrystalline alumina end cap.
    Type: Application
    Filed: September 14, 2001
    Publication date: March 20, 2003
    Inventors: Arlene Hecker, George C. Wei, Helmar G. Adler, Dieter Lang