Patents by Inventor Helmut Beierl

Helmut Beierl has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060077366
    Abstract: A projection exposure lens has an object plane, optical elements for separating beams, a concave mirror, an image plane, a first lens system arranged between the object plane and the optical elements for separating beams, a second double pass lens system arranged between the optical elements for separating beams and the concave mirror, a third lens system arranged between the optical elements for separating beams and the image plane. The second lens system has a maximum of five lenses.
    Type: Application
    Filed: November 21, 2005
    Publication date: April 13, 2006
    Inventors: David Shafer, Alexander Epple, Aurelian Dodoc, Helmut Beierl, Wilhelm Ulrich
  • Patent number: 7006304
    Abstract: A catadioptric projection lens configured for imaging a pattern arranged in an object plane (2) onto an image plane (4) while creating a single, real, intermediate image (3) has a catadioptric imaging group (5) having a concave mirror (6) and a beam-deflector (7), and a dioptric imaging lens group (20) that commences after the beam-deflector. The system is configured such that the intermediate image follows the first lens (17) of a dioptric section (8) and is preferably readily accessible. Arranging the intermediate image both between a pair of lenses (17, 21) of the dioptric section and at a large distance behind the final reflective surface of the beam-deflector helps to avoid imaging aberrations.
    Type: Grant
    Filed: February 6, 2004
    Date of Patent: February 28, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: Alexander Epple, Helmut Beierl
  • Patent number: 6995930
    Abstract: A projection exposure lens has an object plane, optical elements for separating beams, a concave mirror, an image plane, a first lens system arranged between the object plane and the optical elements for separating beams, a second double pass lens system arranged between the optical elements for separating beams and the concave mirror, a third lens system arranged between the optical elements for separating beams and the image plane. The second lens system has a maximum of five lenses.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: February 7, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Alexander Epple, Aurelian Dodoc, Helmut Beierl, Wilhelm Ulrich
  • Patent number: 6985286
    Abstract: A projection exposure lens system has an object side catadioptric system, and intermediate image and a refractive lens system. The refractive lens system from its intermediate image side and in the direction of its image plane has a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, a fourth lens group of negative refractive power, and a fifth lens group of positive refractive power.
    Type: Grant
    Filed: February 25, 2004
    Date of Patent: January 10, 2006
    Assignee: Carl Zeiss SMT AG
    Inventors: David R. Shafer, Helmut Beierl, Gerhard Fürter, Karl-Heinz Schuster, Wilhelm Ulrich
  • Publication number: 20050190455
    Abstract: A purely refractive projection objective suitable for immersion microlithography is designed as a single-waist system with five lens groups, in the case of which a first lens group with negative refractive power, a second lens group with positive refractive power, a third lens group with negative refractive power, a fourth lens group with positive refractive power and a fifth lens group with positive refractive power are provided. A constriction site of narrowest constriction of the beam bundle lies in the region of the waist. A waist distance AT exists between the object plane and the constriction site X. The condition AT/L?0.4 holds for a distance ratio AT/L between the waist distance AT and an object-image distance L of the projection objective. Embodiments of inventive projection objectives reach very high numerical apertures NA>1.1 in conjunction with a large image field and are distinguished by a compact overall size and good correction of the lateral chromatic aberration.
    Type: Application
    Filed: December 15, 2004
    Publication date: September 1, 2005
    Inventors: Hans-Juergen Rostalski, Aurelian Dodoc, Alexander Epple, Helmut Beierl
  • Publication number: 20050185269
    Abstract: A catadioptric projection objective for imaging a pattern arranged on the object plane of the projection objective, on the image plane of the projection objective, comprising: a first objective part for imaging an object field in a first real intermediate image; a second objective part for producing a second real intermediate image with the radiation coming from the first objective part; and a third objective part for imaging the second real intermediate image on the image plane; wherein at least one of the objective parts is a catadioptric objective part with a concave mirror, and at least one of the objective parts is a refractive objective part and a folding mirror is arranged within this refractive objective part in such a way that a field lens is arranged between the folding mirror and an intermediate image which is closest to the folding mirror.
    Type: Application
    Filed: December 20, 2004
    Publication date: August 25, 2005
    Inventors: Alexander Epple, Helmut Beierl, Aurelian Dodoc, Wilhelm Ulrich
  • Publication number: 20050157400
    Abstract: A projection objective has at least five lens groups (G1 to G5) and has several lens surfaces. At least two aspheric lens surfaces are arranged so as to be mutually adjacent. These mutually adjacently arranged lens surfaces are characterized as a double asphere. This at least one double asphere (21) is mounted at a minimum distance from an image plane (0?) which is greater than the maximum lens diameter (D2) of the objective.
    Type: Application
    Filed: March 15, 2005
    Publication date: July 21, 2005
    Inventors: Karl-Heinz Schuster, David Shafer, Wilhelm Ulrich, Helmut Beierl, Wolfgang Singer
  • Patent number: 6903802
    Abstract: A projection objective has at least five lens groups (G1 to G5) and has several lens surfaces. At least two aspheric lens surfaces are arranged so as to be mutually adjacent. These mutually adjacently arranged lens surfaces are characterized as a double asphere. This at least one double asphere (21) is mounted at a minimum distance from an image plane (0?) which is greater than the maximum lens diameter (D2) of the objective.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: June 7, 2005
    Assignee: Carl-Zeiss-Stiftung
    Inventors: Karl-Heinz Schuster, David R. Shafer, Wilhelm Ulrich, Helmut Beierl, Wolfgang Singer
  • Publication number: 20050117224
    Abstract: A catadioptric projection objective is used to project a pattern arranged in an object plane of the projection objective into an image plane of the projection objective with the formation of at least one real intermediate image and has an image-side numerical aperture NA>0.7. The projection objective comprises an optical axis and at least one catadioptric objective part that comprises a concave mirror and a first folding mirror. There are a first beam section running from the object plane to the concave mirror and a second beam section running from the concave mirror to the image plane. The first folding mirror is arranged with reference to the concave mirror in such a way that one of the beam sections is folded at the first folding mirror and the other beam section passes the first folding mirror without vignetting, the first beam section and the second beam section crossing one another in a cross-over region.
    Type: Application
    Filed: December 15, 2003
    Publication date: June 2, 2005
    Inventors: David Shafer, Alexander Epple, Aurelian Dodoc, Helmut Beierl, Wilhelm Ulrich
  • Publication number: 20040263955
    Abstract: A catadioptric projection lens for imaging a pattern arranged in an object plane onto an image plane, preferably while creating a real intermediate image, including a catadioptric first lens section having a concave mirror and a physical beamsplitter having a beamsplitting surface, as well as a second lens section that is preferably refractive and follows the beamsplitter, between its object plane and image plane. Positive refractive power is arranged in an optical near-field of the object plane, which is arranged at a working distance from the first optical surface of the projection lens. The beamsplitter lies in the vicinity of low marginal-ray heights, which allows configuring projection lenses that are fully corrected for longitudinal chromatic aberration, while employing small quantities of materials, particularly those materials needed for fabricating their beamsplitters.
    Type: Application
    Filed: March 22, 2004
    Publication date: December 30, 2004
    Applicant: CARL ZEISS SMT AG
    Inventors: Wilhelm Ulrich, David R. Shafer, Alexander Epple, Helmut Beierl, Aurelian Dodoc
  • Publication number: 20040233409
    Abstract: A projection objective has at least five lens groups (G1 to G5) and has several lens surfaces. At least two aspheric lens surfaces are arranged so as to be mutually adjacent. These mutually adjacently arranged lens surfaces are characterized as a double asphere. This at least one double asphere (21) is mounted at a minimum distance from an image plane (0′) which is greater than the maximum lens diameter (D2) of the objective.
    Type: Application
    Filed: November 7, 2003
    Publication date: November 25, 2004
    Applicant: Carl-Zeiss-Stiftung
    Inventors: Karl-Heinz Schuster, David R. Shafer, Wilhelm Ulrich, Helmut Beierl, Wolfgang Singer
  • Patent number: 6806942
    Abstract: A projection exposure system is proposed which is positionable between a first object and a second object for imaging the first object in a region of the second object with light of a wavelength band having a width &dgr;&lgr; about a central working wavelength &lgr;, wherein a relative width &dgr;&lgr;/&lgr; of the wavelength band is larger than 0.002, in particular, larger than 0.005, for example, of the Hg-I-line. The projection exposure system is a so-called three-bulge system comprising three bulges having, as a whole, a positive refractive power and two waists having, as a whole, a negative refractive power. By applying suitable measures, in particular, by suitably selecting the material for the lenses forming the projection exposure system, the long-term stability of the system is increased.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: October 19, 2004
    Assignee: Carl Zeiss SMT AG
    Inventors: Karl-Heinz Schuster, Wilhelm Ulrich, Toralf Gruner, Daniel Kraehmer, Wolfgang Singer, Alexander Epple, Helmut Beierl, Reiner Garreis
  • Publication number: 20040169914
    Abstract: A projection exposure lens system has an object side catadioptric system, and intermediate image and a refractive lens system. The refractive lens system from its intermediate image side and in the direction of its image plane has a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, a fourth lens group of negative refractive power, and a fifth lens group of positive refractive power.
    Type: Application
    Filed: February 25, 2004
    Publication date: September 2, 2004
    Inventors: David R. Shafer, Helmut Beierl, Gerhard Furter, Karl-Heinz Schuster, Wilhelm Ulrich
  • Publication number: 20040160677
    Abstract: A catadioptric projection lens configured for imaging a pattern arranged in an object plane (2) onto an image plane (4) while creating a single, real, intermediate image (3) has a catadioptric imaging group (5) having a concave mirror (6) and a beam-deflector (7), and a dioptric imaging lens group (20) that commences after the beam-deflector. The system is configured such that the intermediate image follows the first lens (17) of a dioptric section (8) and is preferably readily accessible. Arranging the intermediate image both between a pair of lenses (17, 21) of the dioptric section and at a large distance behind the final reflective surface of the beam-deflector helps to avoid imaging aberrations.
    Type: Application
    Filed: February 6, 2004
    Publication date: August 19, 2004
    Applicant: CARL ZEISS SMT AG
    Inventors: Alexander Epple, Helmut Beierl
  • Patent number: 6717722
    Abstract: A projection exposure lens system has an object side catadioptric system, and intermediate image and a refractive lens system. The refractive lens system from its intermediate image side and in the direction of its image plane has a first lens group of positive refractive power, a second lens group of negative refractive power, a third lens group of positive refractive power, a fourth lens group of negative refractive power, and a fifth lens group of positive refractive power.
    Type: Grant
    Filed: February 20, 2002
    Date of Patent: April 6, 2004
    Inventors: David R. Shafer, Helmut Beierl, Gerhard Fürter, Karl-Heinz Schuster, Wilhelm Ulrich
  • Patent number: 6717746
    Abstract: A catadioptric projection lens configured for imaging a pattern arranged in an object plane (2) onto an image plane (4) while creating a single, real, intermediate image (3) has a catadioptric first section (5) having a concave mirror (6) and a beam-deflection device (7), and a dioptric second section (8) that commences after the beam-deflection device. The system is configured such that the intermediate image follows the first lens (17) of the dioptric section (8) and is preferably readily accessible. Arranging the intermediate image both between a pair of lenses (17, 21) of the dioptric section and at a large distance behind the final reflective surface of the beam-deflection device helps to avoid imaging aberrations.
    Type: Grant
    Filed: May 22, 2002
    Date of Patent: April 6, 2004
    Assignee: Carl Zeiss Semiconductor Manufacturing Technologies AG
    Inventors: Alexander Epple, Helmut Beierl
  • Publication number: 20040017554
    Abstract: A projection exposure system is proposed which is positionable between a first object and a second object for imaging the first object in a region of the second object with light of a wavelength band having a width &dgr;&lgr; about a central working wavelength &lgr;, wherein a relative width &dgr;&lgr;/&lgr; of the wavelength band is larger than 0.002, in particular, larger than 0.005, for example, of the Hg-I-line. The projection exposure system is a so-called three-bulge system comprising three bulges having, as a whole, a positive refractive power and two waists having, as a whole, a negative refractive power. By applying suitable measures, in particular, by suitably selecting the material for the lenses forming the projection exposure system, the long-term stability of the system is increased.
    Type: Application
    Filed: May 8, 2003
    Publication date: January 29, 2004
    Applicant: Carl Zeiss SMT AG
    Inventors: Karl-Heinz Schuster, Wilhelm Ulrich, Toralf Gruner, Daniel Kraehmer, Wolfgang Singer, Alexander Epple, Helmut Beierl, Reiner Garreis
  • Patent number: 6665126
    Abstract: A projection exposure lens has an object plane, optical elements for separating beams, a concave mirror, an image plane, a first lens system arranged between the object plane and the optical elements for separating beams, a second double pass lens system arranged between the optical elements for separating beams and the concave mirror, a third lens system arranged between the optical elements for separating beams and the image plane. The second lens system has a maximum of five lenses.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: December 16, 2003
    Assignee: Carl-Zeiss-Stiftung
    Inventors: David R. Shafer, Wilhelm Ulrich, Helmut Beierl
  • Patent number: 6646718
    Abstract: A projection objective has at least five lens groups (G1 to G5) and has several lens surfaces. At least two aspheric lens surfaces are arranged so as to be mutually adjacent. These mutually adjacently arranged lens surfaces are characterized as a double asphere. This at least one double asphere (21) is mounted at a minimum distance from an image plane (0′) which is greater than the maximum lens diameter (D2) of the objective.
    Type: Grant
    Filed: June 24, 2002
    Date of Patent: November 11, 2003
    Assignee: Carl Zeiss Semiconductor Manufacturing Technologies AG
    Inventors: Karl-Heinz Schuster, David R. Shafer, Wilhelm Ulrich, Helmut Beierl, Wolfgang Singer
  • Publication number: 20030179356
    Abstract: A projection objective has at least five lens groups (G1 to G5) and has several lens surfaces. At least two aspheric lens surfaces are arranged so as to be mutually adjacent. These mutually adjacently arranged lens surfaces are characterized as a double asphere. This at least one double asphere (21) is mounted at a minimum distance from an image plane (0′) which is greater than the maximum lens diameter (D2) of the objective.
    Type: Application
    Filed: June 24, 2002
    Publication date: September 25, 2003
    Inventors: Karl-Heinz Schuster, David R. Shafer, Wilhelm Ulrich, Helmut Beierl, Wolfgang Singer