Patents by Inventor Helmut Maeckel

Helmut Maeckel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230307499
    Abstract: A power semiconductor device having a barrier region is provided. A power unit cell of the power semiconductor device has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the power semiconductor device. For example, the trench electrodes are structured to reduce the total gate charge of the power semiconductor device. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Application
    Filed: June 1, 2023
    Publication date: September 28, 2023
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Patent number: 11682700
    Abstract: An power semiconductor device having a barrier region is provided. A power unit cell of the power semiconductor device has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the power semiconductor device. For example, the trench electrodes are structured to reduce the total gate charge of the power semiconductor device. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: June 20, 2023
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Publication number: 20210210604
    Abstract: An power semiconductor device having a barrier region is provided. A power unit cell of the power semiconductor device has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the power semiconductor device. For example, the trench electrodes are structured to reduce the total gate charge of the power semiconductor device. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Application
    Filed: March 22, 2021
    Publication date: July 8, 2021
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Patent number: 10978560
    Abstract: A power semiconductor device having a barrier region is provided. A power unit cell of the power semiconductor device has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the power semiconductor device. For example, the trench electrodes are structured to reduce the total gate charge of the power semiconductor device. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 13, 2021
    Assignee: Infineon Technologies AG
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel
  • Publication number: 20190305087
    Abstract: An IGBT having a barrier region is provided. A power unit cell of the IGBT has at least two trenches that may both extend into the barrier region. The at least two trenches may both have a respective trench electrode coupled to a control terminal of the IGBT. For example, the trench electrodes are structured to reduce the total gate charge of the IGBT. The barrier region may be p-doped and vertically confined, i.e., in and against the extension direction, by the drift region. The barrier region can be electrically floating.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Alexander Philippou, Roman Baburske, Christian Jaeger, Johannes Georg Laven, Helmut Maeckel