Patents by Inventor Helmut Wietschorke

Helmut Wietschorke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250147340
    Abstract: A computer-implemented method of determining a base curve value representing a base curve for a front surface of a spectacle lens is disclosed. The method includes receiving individual prescription data and determining the base curve value for the front surface of the spectacle lens based on the prescription data. In particular, the base curve value is calculated from the received prescription data based on a functional relationship between one or more values included in the prescription data and the base curve value.
    Type: Application
    Filed: January 9, 2025
    Publication date: May 8, 2025
    Applicant: Carl Zeiss Vision International GmbH
    Inventors: Markus Welscher, Helmut Wietschorke, Ralf-Roland Sauer, Christoph Winter
  • Patent number: 12228803
    Abstract: A computer-implemented method of determining a base curve value representing a base curve for a front surface of a spectacle lens is disclosed. The method includes receiving individual prescription data and determining the base curve value for the front surface of the spectacle lens based on the prescription data. In particular, the base curve value is calculated from the received prescription data based on a functional relationship between one or more values included in the prescription data and the base curve value.
    Type: Grant
    Filed: October 18, 2019
    Date of Patent: February 18, 2025
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Markus Welscher, Helmut Wietschorke, Ralf-Roland Sauer, Christoph Winter
  • Patent number: 12204175
    Abstract: A data record contains at least the following data values: spatial coordinates of a reference point at each eye of the wearer; a spatial direction vector for specifying a viewing direction of the wearer through the spectacle lens; and a spatial rim curve or edge curve. The data record can be used to produce a spectacle lens. A method and a computer program for generating the data record, and a method for producing the spectacle lens are also disclosed. It is possible to produce the spectacle lens after a single capture of a data record for adapting the spectacle lenses to the wearer of the pair of spectacles and to the spectacle frame selected by the wearer. A different spectacle lens as the spectacle lens originally selected can subsequently be used as the spectacle lens without having to record a further data record for the adaptation for the wearer.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: January 21, 2025
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Michael Gamperling, Helmut Wietschorke, Peter Johann Haas
  • Patent number: 11892712
    Abstract: A progressive spectacle lens has a front face and a rear face and a uniform substrate with a locally varying refractive index. The front face and/or the rear face of the substrate is formed as a free-form surface and carries only functional coatings, if any. The refractive index varies (a) only in a first spatial dimension and in a second spatial dimension and is constant in a third spatial dimension, a distribution of the refractive being neither point-symmetrical nor axis symmetrical, or (b) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index being neither point-symmetrical nor axis symmetrical, or (c) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index not being point-symmetrical or axis symmetrical at all.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: February 6, 2024
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Patent number: 11796838
    Abstract: A computer implemented method of determining a numerical representation of a spectacle lens is provided, in which a numerically represented working spectacle lens is optimized by ray tracing using pencils of rays along different viewing directions of an eye to obtain an optimized numerical representation. The principal rays of the pencils of rays each pass different ray passing points forming points of a vertex surface. The principal rays extend along a viewing direction related to the respective ray passing point. The locations of the ray passing points are determined by surface points of a non-spherical apex surface representing the locations of the apex of the cornea when the eye rotates. A fixed distance is added to the apex surface at the respective surface points in a direction that corresponds to the viewing direction of the eye when the apex of the cornea is located at that surface point.
    Type: Grant
    Filed: March 21, 2023
    Date of Patent: October 24, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventor: Helmut Wietschorke
  • Patent number: 11740488
    Abstract: A progressive spectacle lens has a front face and a rear face and a uniform substrate with a locally varying refractive index. The front face and/or the rear face of the substrate is formed as a free-form surface and carries only functional coatings, if any. The refractive index varies (a) only in a first spatial dimension and in a second spatial dimension and is constant in a third spatial dimension, a distribution of the refractive being neither point-symmetrical nor axis symmetrical, or (b) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index being neither point-symmetrical nor axis symmetrical, or (c) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index not being point-symmetrical or axis symmetrical at all.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: August 29, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Publication number: 20230229019
    Abstract: A computer implemented method of determining a numerical representation of a spectacle lens is provided, in which a numerically represented working spectacle lens is optimized by ray tracing using pencils of rays along different viewing directions of an eye to obtain an optimized numerical representation. The principal rays of the pencils of rays each pass different ray passing points forming points of a vertex surface. The principal rays extend along a viewing direction related to the respective ray passing point. The locations of the ray passing points are determined by surface points of a non-spherical apex surface representing the locations of the apex of the cornea when the eye rotates. A fixed distance is added to the apex surface at the respective surface points in a direction that corresponds to the viewing direction of the eye when the apex of the cornea is located at that surface point.
    Type: Application
    Filed: March 21, 2023
    Publication date: July 20, 2023
    Inventor: Helmut Wietschorke
  • Patent number: 11693258
    Abstract: A computer-implemented method for fitting a spectacle lens, which has a first spectacle lens surface, a second spectacle lens surface, and at least one dioptric power to be obtained, to a spectacle frame with a certain frame edge curve is made available. In the method, a free-form surface formed on a first spectacle lens surface is fitted to the frame edge curve of the spectacle frame. The free-form surface is fitted to the frame edge curve by virtue of the free-form surface and the second spectacle lens surface being optimized with regard to minimizing the difference between the free-form surface edge curve and the frame edge curve and with regard to achieving the at least one dioptric power to be obtained with the spectacle lens.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: July 4, 2023
    Assignee: Carl Zeiss Vision International GmbH
    Inventor: Helmut Wietschorke
  • Patent number: 11536781
    Abstract: The present disclosure relates to a magnetic-sensor device comprising a circuit board made of an electrically insulating material and having conductor tracks, and comprising a permanent magnet surface-mounted on the circuit board, and a magnetic-field sensor connected to the conductor tracks of the circuit board. An SMD component for populating a circuit board is also proposed, which SMD component comprises a permanent magnet and a magnetic-field sensor.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: December 27, 2022
    Assignee: Infineon Technologies AG
    Inventors: Horst Theuss, Klaus Elian, Helmut Wietschorke
  • Patent number: 11372264
    Abstract: A progressive spectacle lens has a front surface, a rear surface, and a spatially varying refractive index. The progressive spectacle lens can have: (a) a refractive index that changes only in a first and second spatial dimension and is constant in a third spatial dimension, and the distribution of the refractive index in the first spatial dimension and the second spatial dimension is neither punctually nor axially symmetric; (b) a refractive index that changes in a first, a second, and third spatial dimension, and the distribution of the refractive index in the first spatial dimension and the second spatial dimension is neither punctually nor axially symmetric on all planes perpendicular to the third spatial dimension; or (c) a refractive index that changes in a first, second, and third spatial dimension, and the distribution of the refractive index is not punctually or axially symmetric at all.
    Type: Grant
    Filed: July 19, 2020
    Date of Patent: June 28, 2022
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Publication number: 20220171213
    Abstract: A computer-implemented method for fitting a spectacle lens, which has a first spectacle lens surface, a second spectacle lens surface, and at least one dioptric power to be obtained, to a spectacle frame with a certain frame edge curve is made available. In the method, a free-form surface formed on a first spectacle lens surface is fitted to the frame edge curve of the spectacle frame. The free-form surface is fitted to the frame edge curve by virtue of the free-form surface and the second spectacle lens surface being optimized with regard to minimizing the difference between the free-form surface edge curve and the frame edge curve and with regard to achieving the at least one dioptric power to be obtained with the spectacle lens.
    Type: Application
    Filed: February 21, 2022
    Publication date: June 2, 2022
    Inventor: Helmut Wietschorke
  • Patent number: 11287344
    Abstract: A pressure sensor module including a housing, a pressure sensor chip, and one or more of an integrated passive device (IDP) chip and discrete passive devices are disclosed. The pressure sensor chip and one or more of the IPD chip and the discrete passive devices are arranged within the housing.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: March 29, 2022
    Assignee: Infineon Technologies AG
    Inventors: Mathias Vaupel, Matthias Boehm, Steven Gross, Markus Loehndorf, Stephan Schmitt, Horst Theuss, Helmut Wietschorke
  • Publication number: 20220091437
    Abstract: A progressive spectacle lens has a front face and a rear face and a uniform substrate with a locally varying refractive index. The front face and/or the rear face of the substrate is formed as a free-form surface and carries only functional coatings, if any. The refractive index varies (a) only in a first spatial dimension and in a second spatial dimension and is constant in a third spatial dimension, a distribution of the refractive being neither point-symmetrical nor axis symmetrical, or (b) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index being neither point-symmetrical nor axis symmetrical, or (c) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index not being point-symmetrical or axis symmetrical at all.
    Type: Application
    Filed: November 10, 2021
    Publication date: March 24, 2022
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Publication number: 20210382330
    Abstract: A data record contains at least the following data values: spatial coordinates of a reference point at each eye of the wearer; a spatial direction vector for specifying a viewing direction of the wearer through the spectacle lens; and a spatial rim curve or edge curve. The data record can be used to produce a spectacle lens. A method and a computer program for generating the data record, and a method for producing the spectacle lens are also disclosed. It is possible to produce the spectacle lens after a single capture of a data record for adapting the spectacle lenses to the wearer of the pair of spectacles and to the spectacle frame selected by the wearer. A different spectacle lens as the spectacle lens originally selected can subsequently be used as the spectacle lens without having to record a further data record for the adaptation for the wearer.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 9, 2021
    Inventors: Michael Gamperling, Helmut Wietschorke, Peter Johann Haas
  • Publication number: 20210341555
    Abstract: The present disclosure relates to a magnetic-sensor device comprising a circuit board made of an electrically insulating material and having conductor tracks, and comprising a permanent magnet surface-mounted on the circuit board, and a magnetic-field sensor connected to the conductor tracks of the circuit board. An SMD component for populating a circuit board is also proposed, which SMD component comprises a permanent magnet and a magnetic-field sensor.
    Type: Application
    Filed: April 14, 2021
    Publication date: November 4, 2021
    Inventors: Horst THEUSS, Klaus ELIAN, Helmut WIETSCHORKE
  • Patent number: 11086142
    Abstract: A progressive spectacle lens includes a substrate which has a front face and a rear face and is made from a material with a regionally varying refractive index, wherein the front face and/or the rear face has/have a free-form surface geometry. The progressive spectacle lens complies with the following optical requirements: (1) a prescribed dioptric power in the distance reference point within the permissible limit deviations in accordance with EN ISO 8980-2:2004 and a prescribed dioptric power in the near reference point within the permissible limit deviations in accordance with EN ISO 8980-2:2004, (2) a monotonically steady increase in the dioptric power between the distance reference point and near reference point along a principal line of vision, and (3) a progression channel. The progressive spectacle lens has a free-form surface geometry of the front face and/or rear face.
    Type: Grant
    Filed: January 20, 2021
    Date of Patent: August 10, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Publication number: 20210199991
    Abstract: A progressive spectacle lens has a front face and a rear face and a uniform substrate with a locally varying refractive index. The front face and/or the rear face of the substrate is formed as a free-form surface and carries only functional coatings, if any. The refractive index varies (a) only in a first spatial dimension and in a second spatial dimension and is constant in a third spatial dimension, a distribution of the refractive being neither point-symmetrical nor axis symmetrical, or (b) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index being neither point-symmetrical nor axis symmetrical, or (c) in a first spatial dimension and in a second spatial dimension and in a third spatial dimension, a distribution of the refractive index not being point-symmetrical or axis symmetrical at all.
    Type: Application
    Filed: January 20, 2021
    Publication date: July 1, 2021
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Publication number: 20210141244
    Abstract: A progressive spectacle lens includes a substrate which has a front face and a rear face and is made from a material with a regionally varying refractive index, wherein the front face and/or the rear face has/have a free-form surface geometry. The progressive spectacle lens complies with the following optical requirements: (1) a prescribed dioptric power in the distance reference point within the permissible limit deviations in accordance with EN ISO 8980-2:2004 and a prescribed dioptric power in the near reference point within the permissible limit deviations in accordance with EN ISO 8980-2:2004, (2) a monotonically steady increase in the dioptric power between the distance reference point and near reference point along a principal line of vision, and (3) a progression channel. The progressive spectacle lens has a free-form surface geometry of the front face and/or rear face.
    Type: Application
    Filed: January 20, 2021
    Publication date: May 13, 2021
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Patent number: 10989932
    Abstract: A product includes a progressive power spectacle lens or a representation, stored on a data storage medium, of the progressive power spectacle lens. The progressive power spectacle lens has a front surface and a back surface and a spatially varying refractive index, wherein the front surface and/or the back surface is embodied as a progressive surface. The front surface is formed as a free-form surface in such a way that the maximum of the absolute value of the mean curvature of the front surface lies in the intermediate corridor and/or the back surface is formed as a free-form surface in such a way that the minimum of the absolute value of the mean curvature of the back surface lies in the intermediate corridor. Further, a computer-implemented method for planning a progressive power spectacle lens with a spatially varying refractive index and a progressive surface is disclosed.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: April 27, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Gerhard Kelch, Christoph Menke, Helmut Wietschorke
  • Patent number: 10976573
    Abstract: A computer-implemented method for providing a lens shape for an ophthalmic lens is disclosed. Further, there is provided a method for angular smoothing of a surface determined by carrier lines radially outwards of a prescription zone bordered by a first boundary line. In addition, there is provided an ophthalmic lens, in particular, a spectacle lens. Moreover, a method for minimizing the difference in thickness between two ophthalmic lenses for the same spectacles is provided. A computer program product and a machine-readable storage medium are provided as well.
    Type: Grant
    Filed: May 3, 2019
    Date of Patent: April 13, 2021
    Assignee: Carl Zeiss Vision International GmbH
    Inventors: Ray Steven Spratt, Philipp Ellinger, Helmut Wietschorke, Angela Nolan, Saulius Varnas