Patents by Inventor Hemant Bheda

Hemant Bheda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11123930
    Abstract: The present invention relates to a system and a method for optimizing printing parameters, such as slicing parameters and tool path instructions, for additive manufacturing. The present invention comprises a property analysis module that predicts and analyses properties of a filament object model, representing a constructed 3D object. The filament object model is generated based on the tool path instructions and user specified object properties. Analysis includes comparing the predicted filament object model properties with the user specified property requirements; and further modifying the printing parameters in order to meet the user specified property requirements.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: September 21, 2021
    Assignee: Arevo, Inc.
    Inventors: Hemant Bheda, Wiener Mondesir, Riley Reese, Shekar Mantha
  • Patent number: 11117311
    Abstract: A material for use in a fused filament fabrication (FFF) printer comprises a polyaryletherketone (PAEK) having an amorphous morphology. In some embodiments, the material also includes a PAEK having a semi-crystalline morphology.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: September 14, 2021
    Assignee: Arevo, Inc.
    Inventors: Hemant Bheda, Riley Reese
  • Patent number: 11104059
    Abstract: An apparatus for manufacturing an object includes an extrusion head having an extrusion needle for extruding thermoplastic material associated with one or more fiber strands. The apparatus may further include a turn-table, a more robotic arm for moving the extrusion head and needle, thermoplastic filament and fiber strand spools and thermoplastic filament and fiber strands. A controller is provided for directing the robotic arm, extrusion head and the turn-table. Further, a method for manufacturing an object includes generating a design for the object that substantially satisfies desired structural properties of the object and generating a sequence for extruding one or more beads of thermoplastic material to manufacture the object according to the design, in which the one or more beads of thermoplastic material are associated with one or more fiber strands. The one or more beads of thermoplastic material and the associated one or more fiber strands are then extruded according to the sequence.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: August 31, 2021
    Assignee: Arevo, Inc.
    Inventor: Hemant Bheda
  • Patent number: 11084276
    Abstract: The present invention provides a system and a method for real time monitoring and identifying defects occurring in a three dimensional object build via an additive manufacturing process. Further, the present invention provides in-situ correction of such defects by a plurality of functional tool heads possessing freedom of motion in arbitrary planes and approach, where the functional tool heads are automatically and independently controlled based on a feedback analysis from the printing process, implementing analyzing techniques. Furthermore, the present invention provides a mechanism for analyzing defected data collected from detection devices and correcting tool path instructions and object model in-situ during construction of a 3D object. A build report is also generated that displays, in 3D space, the structural geometry and inherent properties of a final build object along with the features of corrected and uncorrected defects.
    Type: Grant
    Filed: July 26, 2019
    Date of Patent: August 10, 2021
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda, Wiener Mondesir
  • Publication number: 20210237342
    Abstract: The present disclosure provides methods and systems for fabricating at least a portion of a three-dimensional (3D) object. In an example, at least one feedstock may be directed from a source of the at least one feedstock towards a base. The at least one feedstock may comprise a polymeric material and a cross-linking agent. The cross-linking agent may be in an inactive state. Next, first layer of the at least one feedstock may be deposited adjacent to a second layer previously deposited adjacent to the base. The first layer may correspond to at least a portion of the 3D object. During or subsequent to deposition adjacent to the second layer, the cross-linking agent in the first layer may be in an active state to induce cross-linking between the polymeric material in the first layer and a polymeric material in the second layer.
    Type: Application
    Filed: March 18, 2019
    Publication date: August 5, 2021
    Applicant: Arevo, Inc.
    Inventors: Sanjiv Bhatt, Hemant Bheda
  • Publication number: 20210154920
    Abstract: An additive manufacturing system is disclosed that comprises two or more lasers for precisely heating a fiber-reinforced thermoplastic feedstock and a fiber-reinforced thermoplastic workpiece in preparation for depositing and tamping the feedstock onto the workpiece. The system employs feedforward, a variety of sensors, and feedback to ensure that the feedstock and workpiece are properly heated.
    Type: Application
    Filed: June 2, 2020
    Publication date: May 27, 2021
    Applicant: Arevo, Inc.
    Inventors: Zachary Aaron August, Hemant Bheda, Leonid Michael Treyger
  • Publication number: 20210154928
    Abstract: An additive manufacturing system is disclosed that comprises two or more lasers for precisely heating a fiber-reinforced thermoplastic feedstock and a fiber-reinforced thermoplastic workpiece in preparation for depositing and tamping the feedstock onto the workpiece. The system employs feedforward, a variety of sensors, and feedback to ensure that the feedstock and workpiece are properly heated.
    Type: Application
    Filed: June 2, 2020
    Publication date: May 27, 2021
    Applicant: Arevo, Inc.
    Inventors: Zachary Aaron August, Hemant Bheda, Leonid Michael Treyger
  • Publication number: 20210154921
    Abstract: An additive manufacturing system is disclosed that comprises two or more lasers for precisely heating a fiber-reinforced thermoplastic feedstock and a fiber-reinforced thermoplastic workpiece in preparation for depositing and tamping the feedstock onto the workpiece. The system employs feedforward, a variety of sensors, and feedback to ensure that the feedstock and workpiece are properly heated.
    Type: Application
    Filed: June 2, 2020
    Publication date: May 27, 2021
    Applicant: Arevo, Inc.
    Inventors: Zachary Aaron August, Hemant Bheda, Leonid Michael Treyger
  • Publication number: 20210154934
    Abstract: A pair of physically-integrated two-stage heaters are disclosed for precisely heating a thermoplastic filament and a thermoplastic workpiece in preparation for depositing the filament onto the workpiece. The design in physically compact and capable of heating the filament and workpiece to within a very narrow temperature range. This is accomplished with four independently-generated light beams, of different frequencies, that are spatially combined and transmitted, via optical fiber or free-space optics, to the location where they are needed and where they are unpacked (i.e., spatially separated) and shone onto their respective targets.
    Type: Application
    Filed: November 21, 2019
    Publication date: May 27, 2021
    Applicant: Arevo, Inc.
    Inventors: Leonid Michael Treyger, Zachary Aaron August, Hemant Bheda
  • Publication number: 20210154919
    Abstract: An additive manufacturing system is disclosed that comprises two or more lasers for precisely heating a fiber-reinforced thermoplastic feedstock and a fiber-reinforced thermoplastic workpiece in preparation for depositing and tamping the feedstock onto the workpiece. The system employs feedforward, a variety of sensors, and feedback to ensure that the feedstock and workpiece are properly heated.
    Type: Application
    Filed: June 2, 2020
    Publication date: May 27, 2021
    Applicant: Arevo, Inc.
    Inventors: Zachary Aaron August, Hemant Bheda, Leonid Michael Treyger
  • Patent number: 10875974
    Abstract: Methods for producing 3D printing composite polymer materials for use in additive manufacturing processes are provided. The methods result in enhancing the material properties of the printing material by providing a uniform and smooth surface finish of the printing material and the nozzle extrudate for additive manufacturing processes, such as Fused Filament Fabrication. The method includes implementing impregnation techniques for combining carbon nanotubes or other nano-fillers, a polymer resin and a fiber material to produce a polymer material that can be processed into a printing material. Further, the method may include combining the carbon nanotubes or other nano-fillers and the polymer resin to form a masterbatch that may be further combined with the fiber material through an extrusion process. The method results in a printing material with enhanced material properties and smooth surface finish for the printing material and resulting nozzle extrudate for Fused Filament Fabrication.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: December 29, 2020
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda
  • Patent number: 10875975
    Abstract: Methods for producing 3D printing composite polymer materials for use in additive manufacturing processes are provided. The methods result in enhancing the material properties of the printing material by providing a uniform and smooth surface finish of the printing material and the nozzle extrudate for additive manufacturing processes, such as Fused Filament Fabrication. The method includes implementing impregnation techniques for combining carbon nanotubes or other nano-fillers, a polymer resin and a fiber material to produce a polymer material that can be processed into a printing material. Further, the method may include combining the carbon nanotubes or other nano-fillers and the polymer resin to form a masterbatch that may be further combined with the fiber material through an extrusion process. The method results in a printing material with enhanced material properties and smooth surface finish for the printing material and resulting nozzle extrudate for Fused Filament Fabrication.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 29, 2020
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda
  • Patent number: 10857778
    Abstract: Methods and systems are disclosed for structurally analyzing and/or three-dimensional printing a part. The method may comprise receiving a model of the part for three-dimensional printing from a material comprising a matrix, receiving one or more properties for the material, and using the model, determining a print head tool path for use during the three-dimensional printing of the part. The method may also comprise determining a trajectory of at least one stiffness-contributing portion of the material based at least in part on the print head tool path, determining a performance of the part based at least in part on the one or more properties and the trajectory, and electronically outputting the performance of the part.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: December 8, 2020
    Assignee: Arevo, Inc.
    Inventors: Chandrashekar Mantha, Peter Woytowitz, Wiener Mondesir, Hemant Bheda
  • Patent number: 10843403
    Abstract: The present disclosure provides methods for printing at least a portion of a three-dimensional (3D) object, comprising receiving, in computer memory, a model of the 3D object. Next, at least one filament material from a source of the at least one filament material may be directed towards a substrate that is configured to support the 3D object, thereby depositing a first layer corresponding to a portion of the 3D object adjacent to the substrate. A second layer corresponding to at least a portion of the 3D object may be deposited. The first and second layer may be deposited in accordance with the model of the 3D object. At least a first energy beam from at least one energy source may be used to selectively melt at least a portion of the first layer and/or the second layer, thereby forming at least a portion of the 3D object.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: November 24, 2020
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda
  • Patent number: 10800095
    Abstract: The present disclosure provides methods for printing at least a portion of a three-dimensional (3D) object, comprising receiving, in computer memory, a model of the 3D object. Next, at least one filament material from a source of the at least one filament material may be directed towards a substrate that is configured to support the 3D object, thereby depositing a first layer corresponding to a portion of the 3D object adjacent to the substrate. A second layer corresponding to at least a portion of the 3D object may be deposited. The first and second layer may be deposited in accordance with the model of the 3D object. At least a first energy beam from at least one energy source may be used to selectively melt at least a portion of the first layer and/or the second layer, thereby forming at least a portion of the 3D object.
    Type: Grant
    Filed: December 18, 2017
    Date of Patent: October 13, 2020
    Assignee: Arevo, Inc.
    Inventors: Riley Reese, Hemant Bheda
  • Publication number: 20200307174
    Abstract: The present disclosure provides methods and systems for performing analysis on a part for printing. The method may comprise receiving, in computer memory, a computer model of the part and partitioning the computer model of the part into at least (i) a first region comprising one or more voids and (ii) a second region that is filled with a representation of a material for forming the part, to yield a partitioned computer model. At least a first mesh may be generated in the first region and at least a second mesh may be generated in the second region to yield a mesh array in the partitioned computer model. The mesh array, including the first mesh and the second mesh, may be to determine one or more properties of the part. The mesh array may be used to generate a print head toolpath usable to print the part.
    Type: Application
    Filed: August 8, 2017
    Publication date: October 1, 2020
    Inventors: Peter WOYTOWITZ, Chandrashekar MANTHA, Wiener MONDESIR, Hemant BHEDA
  • Patent number: 10782673
    Abstract: A system and method for additive manufacturing of otherwise thermosetting polymers, such as PAI, is disclosed. The system includes fast-curing hardware that facilitates curing each deposited layer before a successive layer is deposited. This reduces the time to provide a finished part from weeks to hours.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: September 22, 2020
    Assignee: Arevo, Inc.
    Inventors: Hemant Bheda, Riley Reese
  • Publication number: 20200290266
    Abstract: The present disclosure provides methods and systems for printing a three-dimensional (3D) object. A model of the 3D object, in computer memory, may be received. Next, at least one filament material from a source may be directed towards a build platform configured to support the 3D object, thereby depositing a first layer of a portion of the 3D object. The at least one filament material may be used to deposit a second layer corresponding to at least a portion of the 3D object. The first and second layers may be deposited in accordance with the model of the 3D object. While, the second layer is being deposited, at least one energy beam may selectively heat a first portion of the first layer and a second portion of the at least one filament material.
    Type: Application
    Filed: November 27, 2018
    Publication date: September 17, 2020
    Applicant: Arevo, Inc.
    Inventors: Sanjiv Bhatt, Hemant Bheda
  • Publication number: 20200247057
    Abstract: The present invention relates to a system and a method for optimizing printing parameters, such as slicing parameters and tool path instructions, for additive manufacturing. The present invention comprises a property analysis module that predicts and analyses properties of a filament object model, representing a constructed 3D object. The filament object model is generated based on the tool path instructions and user specified object properties. Analysis includes comparing the predicted filament object model properties with the user specified property requirements; and further modifying the printing parameters in order to meet the user specified property requirements.
    Type: Application
    Filed: December 20, 2019
    Publication date: August 6, 2020
    Inventors: Hemant BHEDA, Wiener MONDESIR, Riley REESE, Shekar MANTHA
  • Patent number: 10703042
    Abstract: A method and apparatus for additive manufacturing wherein a fiber composite filament having an arbitrarily shaped cross section is softened and then flattened to tape-like form factor for incorporation into a part that is being additively manufactured.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: July 7, 2020
    Assignee: Arevo, Inc.
    Inventors: Armando Armijo, Hemant Bheda, Chandrashekar Mantha, Wiener Mondesir, Sohil Nandu, Riley Reese