Patents by Inventor Hemant Bokil

Hemant Bokil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10974051
    Abstract: An example of a system for programming a neurostimulator may include a storage device and a pattern generator. The storage device may store a pattern library and one or more neuronal network models. The pattern library may include fields and waveforms of neuromodulation. The one or more neuronal network models may each be configured to allow for evaluating effects of one or more fields in combination with one or more waveforms in treating one or more indications for neuromodulation. The pattern generator may be configured to construct and approximately optimize a spatio-temporal pattern of neurostimulation and/or its building blocks for a specified range of varying conditions using at least one neuronal network model.
    Type: Grant
    Filed: February 12, 2019
    Date of Patent: April 13, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: G. Karl Steinke, Michael A. Moffitt, Hemant Bokil
  • Patent number: 10960214
    Abstract: A system for programming electrical stimulation by a lead includes a processor coupled to a display. The processor presents an interface on the display with user-selectable controls to define stimulation fields and repeating stimulation patterns for delivering the stimulation fields temporally-coordinated with each other. The user-selectable controls include a field control to define the number of stimulation fields, a location control to define locations of the stimulation fields relative to the lead, a repetition control to define a repetition frequency of the stimulation patterns, and a temporal-adjustment control to define temporal adjustments of the stimulation fields.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: March 30, 2021
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: G. Karl Steinke, Stephen Carcieri, Richard Mustakos, Hemant Bokil
  • Publication number: 20210069512
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Application
    Filed: September 21, 2020
    Publication date: March 11, 2021
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Patent number: 10842997
    Abstract: An example of a system may include a processor and a memory device comprising instructions, which when executed by the processor, cause the processor to: access a patient metric of a subject; use the patient metric as an input to a machine learning algorithm, the machine learning algorithm to search a plurality of neuromodulation parameter sets and to identify a candidate neuromodulation parameter set of the plurality of neuromodulation parameter sets, the candidate neuromodulation parameter set designed to produce a non-regular waveform that varies over a time domain and a space domain; and program a neuromodulator using the candidate neuromodulation parameter set to stimulate the subject.
    Type: Grant
    Filed: August 23, 2016
    Date of Patent: November 24, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventors: Michael A. Moffitt, Natalie A. Brill, Jianwen Gu, Juan Gabriel Hincapie Ordonez, Changfang Zhu, Hemant Bokil, Stephen Carcieri
  • Publication number: 20200330750
    Abstract: Methods of providing electrical neural modulation to a patient's brain are disclosed herein. The methods involve differentially modulating two or more target regions of the brain. For example, a first target region may be provided with an electrical neural modulation signal that activates that target region while a second target region is provided with an electrical neural modulation signal that suppresses or deactivates that target region. As the implantable pulse generators (IPGs) described herein include independent current sources, such differential modulation can be provided with a single IPG.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 22, 2020
    Inventor: Hemant Bokil
  • Patent number: 10780283
    Abstract: A system for identifying potential portions of a body in which electrical stimulation to treat a condition or disorder affects at least one symptom of the condition or disorder, stimulation effect, or side effect performs the following acts: obtaining, for each of multiple stimulation instances, an estimation of a region of the body stimulated during the stimulation instance and a score for each of at least one symptom, stimulation effect, or stimulation side effect; and determining, for each of multiple portions of the body using the scores and the estimates in a permutation test, a likelihood that stimulation of that portion of the body affects at least one symptom, stimulation effect, or stimulation side effect. In other embodiments, the system sets up a relationship between the outcomes of stimulation and influence of a particular part of the body on the outcome, and derives this influence using a pseudoinverse.
    Type: Grant
    Filed: March 16, 2018
    Date of Patent: September 22, 2020
    Assignee: Boston Scientific Neuromodulation Corporation
    Inventor: Hemant Bokil
  • Publication number: 20200289834
    Abstract: A system for identifying potential portions of a body in which electrical stimulation to treat a condition or disorder affects at least one symptom of the condition or disorder, stimulation effect, or side effect performs the following acts: obtaining, for each of multiple stimulation instances, an estimation of a region of the body stimulated during the stimulation instance and a score for each of at least one symptom, stimulation effect, or stimulation side effect; and determining, for each of multiple portions of the body using the scores and the estimates in a permutation test, a likelihood that stimulation of that portion of the body affects at least one symptom, stimulation effect, or stimulation side effect. In other embodiments, the system sets up a relationship between the outcomes of stimulation and influence of a particular part of the body on the outcome, and derives this influence using a pseudoinverse.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 17, 2020
    Inventor: Hemant Bokil
  • Patent number: 10716946
    Abstract: A method and system include a processor that outputs a characterization of a correspondence between a volume of estimated tissue activation and a target and/or side effect stimulation volume, and/or that provides controls by which to modify thresholds and/or amounts according to which the volume of estimated activation is to correspond to the target volume.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: July 21, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Hemant Bokil, Mark Pierre, Keith R. Carlton, Michael A. Moffitt, Richard Mustakos, Dean Chen
  • Publication number: 20200155859
    Abstract: A method or system for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system using closed loop programming is provided. For example, pulse generator feedback logic is executed by a processor to interface with control instructions of an implantable pulse generator by incorporating one or more machine learning engines to automatically generate a proposed set of stimulation parameter values that each affect a stimulation aspect of the implantable pulse generator, receive one or more clinical responses and automatically generate a revised set of values taking into account the received clinical responses, and repeating the automated receiving of a clinical response and adjusting the stimulation parameter values taking the clinical response into account, until or unless a stop condition is reach or the a therapeutic response is indicated within a designated tolerance.
    Type: Application
    Filed: January 21, 2020
    Publication date: May 21, 2020
    Inventors: David Blum, Sherry Lin, Hemant Bokil, Michael A. Moffitt
  • Patent number: 10631937
    Abstract: A method for identifying a rotational orientation of a lead includes obtaining a radiological image of the lead having a lead body, a distal tip, electrodes, and an asymmetric marker, where the lead defines a lead axis along the portion of the lead extending from the distal tip and including the electrodes and the asymmetric marker; determining, using the set of lead slices and the set of marker slices, a direction vector extending from an estimated lead axis and passing through a determined center of weighted mass of the lead; and providing an indication of a direction of the direction vector on a display.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: April 28, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Danil Tyulmankov, Hemant Bokil
  • Patent number: 10603498
    Abstract: A method or system for facilitating the determining and setting of stimulation parameters for programming an electrical stimulation system using closed loop programming is provided. For example, pulse generator feedback logic is executed by a processor to interface with control instructions of an implantable pulse generator by incorporating one or more machine learning engines to automatically generate a proposed set of stimulation parameter values that each affect a stimulation aspect of the implantable pulse generator, receive one or more clinical responses and automatically generate a revised set of values taking into account the received clinical responses, and repeating the automated receiving of a clinical response and adjusting the stimulation parameter values taking the clinical response into account, until or unless a stop condition is reach or the a therapeutic response is indicated within a designated tolerance.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 31, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: David Blum, Sherry Lin, Hemant Bokil, Michael A. Moffitt
  • Patent number: 10525257
    Abstract: An implantable electrical stimulation lead includes a lead body; terminals disposed along the proximal portion of the lead body; electrodes disposed along the distal portion of the lead body, the electrodes including at least one segmented electrode; and an asymmetric marker disposed along the distal portion of the lead body and including a first ring and a longitudinal band extending longitudinally from the first ring. The asymmetric marker and lead body are formed of different materials that are distinguishable from each other in the radiological images to facilitate radiological determination of the rotational orientation of the lead when implanted. The marker may also include one or more of a longitudinal extension, a second ring, and non-straight longitudinal edges. The marker may also include the longitudinal band and longitudinal extension without a ring.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: January 7, 2020
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael X. Govea, G. Karl Steinke, Hemant Bokil, Peter J. Yoo
  • Publication number: 20190290907
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Application
    Filed: June 11, 2019
    Publication date: September 26, 2019
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Publication number: 20190282820
    Abstract: A system for identifying potential portions of a body in which electrical stimulation to treat a condition or disorder affects at least one symptom of the condition or disorder, stimulation effect, or side effect performs the following acts: obtaining, for each of multiple stimulation instances, an estimation of a region of the body stimulated during the stimulation instance and a score for each of at least one symptom, stimulation effect, or stimulation side effect; and determining, for each of multiple portions of the body using the scores and the estimates in a permutation test, a likelihood that stimulation of that portion of the body affects at least one symptom, stimulation effect, or stimulation side effect. In other embodiments, the system sets up a relationship between the outcomes of stimulation and influence of a particular part of the body on the outcome, and derives this influence using a pseudoinverse.
    Type: Application
    Filed: March 16, 2018
    Publication date: September 19, 2019
    Inventor: Hemant Bokil
  • Patent number: 10413737
    Abstract: A method for electrical stimulation of a patient includes a) implanting at least a portion of an electrical stimulation lead; b) stimulating the patient using the electrical stimulation lead at multiple test stimulation amplitudes; c) observing a response for each of the test stimulation amplitudes; d) selecting a working stimulation amplitude based on the responses from a group consisting of the test stimulation amplitudes and, optionally, a default stimulation amplitude; e) stimulating the patient using the electrical stimulation lead and the working amplitude at multiple test duty cycles; f) observing a response for each of the test duty cycles; g) selecting a working duty cycle based on the responses from a group consisting of the test duty cycles and, optionally, a default duty cycle; and h) stimulating the patient using the electrical stimulation lead, the working amplitude, and the working duty cycle.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: September 17, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Hemant Bokil, Stephen Carcieri, Ljubomir Manola
  • Patent number: 10369364
    Abstract: Methods and systems for electrical stimulation can include obtaining a biosignal of the patient; altering at least one stimulation parameter of an electrical stimulation system in response to the biosignal; and delivering an electrical stimulation current to one or more selected electrodes of the electrical stimulation system using the at least one stimulation parameter. In some embodiments, a power spectrum is determined from the biosignal. In some embodiments, the biosignal is at least two different biosignals measured at the same or different locations on the patient and a coherence, correlation, or association between the two biosignal is determined.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: August 6, 2019
    Assignee: BOSTON SCIENTIFIC NEUROMODULATION CORPORATION
    Inventors: Michael A. Moffitt, Hemant Bokil
  • Publication number: 20190184174
    Abstract: A computer implemented system and method facilitates a cycle of generation, sharing, and refinement of volumes related to stimulation of anatomical tissue, such as brain or spinal cord stimulation. Such volumes can include target stimulation volumes, side effect volumes, and volumes of estimated activation. A computer system and method also facilitates analysis of groups of volumes, including analysis of differences and/or commonalities between different groups of volumes.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 20, 2019
    Inventors: Stephen Carcieri, G. Karl Steinke, Peter J. Yoo, Richard Mustakos, Hemant Bokil
  • Publication number: 20190184175
    Abstract: A computer implemented system and method facilitates a cycle of generation, sharing, and refinement of volumes related to stimulation of anatomical tissue, such as brain or spinal cord stimulation. Such volumes can include target stimulation volumes, side effect volumes, and volumes of estimated activation. A computer system and method also facilitates analysis of groups of volumes, including analysis of differences and/or commonalities between different groups of volumes.
    Type: Application
    Filed: February 19, 2019
    Publication date: June 20, 2019
    Inventors: Hemant Bokil, Stephen Carcieri, Keith R. Carlton, Michael A. Moffitt, Peter J. Yoo
  • Publication number: 20190168002
    Abstract: An example of a system for programming a neurostimulator may include a storage device and a pattern generator. The storage device may store a pattern library and one or more neuronal network models. The pattern library may include fields and waveforms of neuromodulation. The one or more neuronal network models may each be configured to allow for evaluating effects of one or more fields in combination with one or more waveforms in treating one or more indications for neuromodulation. The pattern generator may be configured to construct and approximately optimize a spatio-temporal pattern of neurostimulation and/or its building blocks for a specified range of varying conditions using at least one neuronal network model.
    Type: Application
    Filed: February 12, 2019
    Publication date: June 6, 2019
    Inventors: G. Karl Steinke, Michael A. Moffitt, Hemant Bokil
  • Publication number: 20190151657
    Abstract: A system for providing electrical stimulation to a patient includes a processor configured to: provide a time-ordered arrangement of multiple stimulation instances, where each of the stimulation instances is configured to produce a different stimulation field from each other stimulation instance in the arrangement; provide an ON/OFF switch pattern that includes alternating ON periods and OFF periods; generate an intermittent stimulation program that corresponds to repetition of the arrangement of stimulation instances with omission of each of the stimulation instances occurring during the OFF periods; and initiate a signal that provides a pulse generator with instructions that enable the pulse generator to generate stimulation according to the intermittent stimulation program using an electrical stimulation lead coupled to the pulse generator.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 23, 2019
    Inventors: Danil Tyulmankov, Hemant Bokil, Peter Alexander Tass