Patents by Inventor Hendrik Bergveld

Hendrik Bergveld has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11293992
    Abstract: There are disclosed fault detection circuits and methods for an N-to-1 Dickson topology hybrid DC-DC power converter. A short circuit fault detection circuit comprises: first and second measuring circuits configured to measure first and second voltages, Vsw1, Vsw2, at the switching node in the first and second state; first and second calculation circuits configured to calculate first and second absolute error voltage as an absolute difference of the respective first and second voltages in one operating cycle (Vsw1[n?1], Vsw2[n?1]) and in a next subsequent operating cycle (Vsw1[n], Vsw2[n]); and first and second fault circuits configured to provide first and second fault outputs indicative of a fault in response to the respective first or second absolute error voltage exceeding a short-circuit-trip level. Open circuit fault detection circuits and methods are also disclosed.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: April 5, 2022
    Assignee: NXP B.V.
    Inventors: Mojtaba Ashourloo, Venkata Raghuram Namburi, Gerard Villar Piqué, John Pigott, Olivier Trescases, Hendrik Bergveld, Alaa Eldin Y El Sherif
  • Patent number: 10958151
    Abstract: Disclosed are switched-mode DC-DC power converter modules, SMPC controllers, and distributed-control multiphase SMPC systems. The controller comprises: a reference clock; a synchronisation input configured to receive a first synchronisation signal; a synchronisation output configured to transmit a second synchronisation signal; a control unit configured to control the operation of the SMPC module with a phase determined by the reference clock signal or the first synchronisation signal; a delay line configured to generate the second synchronisation signal by adding a delay to the selected one of the first synchronisation signal and the reference clock signal; a fault detection terminal; a memory configured to store a datum corresponding to a number N of SMPCs in the system; and a delay calculation module configured to calculate the delay in dependence on the datum and the signal at the fault-detection terminal. Associated methods are also disclosed.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: March 23, 2021
    Assignee: NXP B.V.
    Inventors: Mojtaba Ashourloo, Venkata Raghuram Namburi, Gerard Villar Piqué, John Pigott, Olivier Trescases, Hendrik Bergveld, Alaa Eldin Y El Sherif
  • Publication number: 20200326384
    Abstract: There are disclosed fault detection circuits and methods for an N-to-1 Dickson topology hybrid DC-DC power converter. A short circuit fault detection circuit comprises: first and second measuring circuits configured to measure first and second voltages, Vsw1, Vsw2, at the switching node in the first and second state; first and second calculation circuits configured to calculate first and second absolute error voltage as an absolute difference of the respective first and second voltages in one operating cycle (Vsw1[n?1], Vsw2[n?1]) and in a next subsequent operating cycle (Vsw1[n], Vsw2[n]); and first and second fault circuits configured to provide first and second fault outputs indicative of a fault in response to the respective first or second absolute error voltage exceeding a short-circuit-trip level. Open circuit fault detection circuits and methods are also disclosed.
    Type: Application
    Filed: March 10, 2020
    Publication date: October 15, 2020
    Inventors: Mojtaba Ashourloo, Venkata Raghuram Namburi, Gerard Villar Piqué, John Pigott, Olivier Trescases, Hendrik Bergveld, Alaa Eldin Y. El Sherif
  • Publication number: 20200295649
    Abstract: Disclosed are switched-mode DC-DC power converter modules, SMPC controllers, and distributed-control multiphase SMPC systems. The controller comprises: a reference clock; a synchronisation input configured to receive a first synchronisation signal; a synchronisation output configured to transmit a second synchronisation signal; a control unit configured to control the operation of the SMPC module with a phase determined by the reference clock signal or the first synchronisation signal; a delay line configured to generate the second synchronisation signal by adding a delay to the selected one of the first synchronisation signal and the reference clock signal; a fault detection terminal; a memory configured to store a datum corresponding to a number N of SMPCs in the system; and a delay calculation module configured to calculate the delay in dependence on the datum and the signal at the fault-detection terminal. Associated methods are also disclosed.
    Type: Application
    Filed: February 27, 2020
    Publication date: September 17, 2020
    Inventors: Mojtaba Ashourloo, Venkata Raghuram Namburi, Gerard Villar Piqué, John Pigott, Olivier Trescases, Hendrik Bergveld, Alaa Eldin Y. El Sherif
  • Patent number: 9705489
    Abstract: A cascode transistor circuit comprising a depletion-mode switch in series with a normally-off switch between a drain output terminal and a source output terminal. The circuit also includes a controller comprising a controller output terminal configured to provide a normally-on control signal for a normally-on control terminal of the depletion-mode switch, wherein the normally-on control signal is independent of the normally-off control signal; a negative voltage source configured to provide a negative voltage to the normally-on control terminal of the depletion-mode switch; and a feedback capacitance between the drain output terminal and a control node in a circuit path between the controller output terminal and the normally-on control terminal of the depletion-mode switch.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: July 11, 2017
    Assignee: Nexperia B.V.
    Inventors: Ralf van Otten, Franciscus Schoofs, Matthias Rose, Hendrik Bergveld
  • Publication number: 20160094218
    Abstract: A cascode transistor circuit comprising a depletion-mode switch in series with a normally-off switch between a drain output terminal and a source output terminal. The circuit also includes a controller comprising a controller output terminal configured to provide a normally-on control signal for a normally-on control terminal of the depletion-mode switch, wherein the normally-on control signal is independent of the normally-off control signal; a negative voltage source configured to provide a negative voltage to the normally-on control terminal of the depletion-mode switch; and a feedback capacitance between the drain output terminal and a control node in a circuit path between the controller output terminal and the normally-on control terminal of the depletion-mode switch.
    Type: Application
    Filed: August 25, 2015
    Publication date: March 31, 2016
    Inventors: Ralf van Otten, Franciscus Schoofs, Matthias Rose, Hendrik Bergveld
  • Publication number: 20050054316
    Abstract: In a method of the invention for providing clock signals to a mixed signal telecommunication chip having a communication signal in a communication signal band, said clock signals comprise a central clock frequency signal and sub-frequency signals which are multiples or divisions of said central clock frequency signal. The central clock frequency signal is selected such that the central clock frequency signal and the sub-frequency signals are located outside the telecommunication signal band. The a mixed signal telecommunication chip of the invention takes advantage of the above clock planning.
    Type: Application
    Filed: December 9, 2002
    Publication date: March 10, 2005
    Inventors: Dominicus Leenaerts, Kathleen Philips, Hendrik Bergveld, Eric Van Der Zwan, Josephus Huisken