Patents by Inventor Hendrik F.W. Dekkers

Hendrik F.W. Dekkers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230382756
    Abstract: A mixed metal oxide and methods for making the mixed metal oxide are disclosed. The mixed metal oxide includes metal and metalloid elements including 0.40 to 0.70 parts by mole Mg, 0.30 to 0.60 parts by mole Zn, and 0.00 to 0.30 parts by mole of other elements selected from metals and metalloids, wherein less than 0.01 parts by mole of the other elements is Al, and wherein less than 0.04 parts by mole of the other elements is Ga. The sum of all parts by mole of Mg, Zn, and the other elements may amount to about 1.00. The mixed metal oxide additionally includes) oxygen and less than 0.01 parts by mole of non-metallic and non-metalloid impurities.
    Type: Application
    Filed: May 26, 2023
    Publication date: November 30, 2023
    Inventors: Michiel Jan Van Setten, Geoffrey Pourtois, Hendrik F.W. Dekkers, Gouri Sankar Kar
  • Publication number: 20230382758
    Abstract: Mixed metal oxides and methods for making the mixed metal oxides are disclosed. A mixed metal oxide includes metal or metalloid elements including 0.50 to 0.90 parts by mole Mg, 0.05 to 0.30 parts by mole Al, 0.01 to 0.20 parts by mole Sb, and 0.00 to 0.31 parts by mole of other elements selected from metals and metalloids. The sum of all parts by mole of Mg, Al, Sb, and the other elements selected from metals and metalloids may amount to about 1.00. The mixed metal oxide additionally includes oxygen, and less than 0.01 parts by mole of non-metallic and non-metalloid impurities.
    Type: Application
    Filed: May 30, 2023
    Publication date: November 30, 2023
    Inventors: Michiel Jan van Setten, Geoffrey Pourtois, Hendrik F.W. Dekkers, Gouri Sankar Kar
  • Patent number: 11702731
    Abstract: A method for forming a film of an oxide of In, Ga, and Zn, having a spinel crystalline phase comprises providing a substrate in a chamber; providing a sputtering target in said chamber, the target comprising an oxide of In, Ga, and Zn, wherein: In, Ga, and Zn represent together at least 95 at % of the elements other than oxygen, In represents from 0.6 to 44 at % of In, Ga, and Zn, Ga represents from 22 to 66 at % of In, Ga, and Zn, and Zn represents from 20 to 46 at % of In, Ga, and Zn; and forming a film on the substrate, the substrate being at a temperature of from 125° C. to 250° C., by sputtering the target with a sputtering gas comprising O2, the sputtering being performed at a sputtering power of at least 200 W.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: July 18, 2023
    Assignees: IMEC vzw, Applied Materials Inc.
    Inventors: Hendrik F. W. Dekkers, Jose Ignacio del Agua Borniquel
  • Publication number: 20230010899
    Abstract: In an aspect, a mixed metal oxide comprises or consists essentially of: a mixture comprises or consisting essentially of 0.30 to 0.69 parts by mole Mg, 0.20 to 0.69 parts by mole Zn, 0.01 to 0.30 parts by mole of a third element selected from Al and Ga, and, either, when the third element is Al, 0.00 to 0.31 parts by mole of other elements selected from metals and metalloids, or, when the third element is Ga, 0.00 to 0.15 parts by mole of other elements selected from metals and metalloids, wherein the sum of all parts by mole of Mg, Zn, the third element, and the other elements amounts to 1.00, wherein the amount in parts by mole of the other elements is lower than the amount in parts by mole of Mg and is lower than the amount in parts by mole of Zn; oxygen; and less than 0.01 parts by mole of non-metallic and non-metalloid impurities.
    Type: Application
    Filed: July 1, 2022
    Publication date: January 12, 2023
    Inventors: Michiel Jan van Setten, Hendrik F.W Dekkers, Karl Opsomer, Geoffrey Pourtois, Gouri Sankar Kar
  • Patent number: 11430898
    Abstract: Methods and apparatus for forming a thin film transistor (TFT) having a metal oxide layer. The method may include forming an amorphous metal oxide layer and treating the metal oxide layer with a silicon containing gas or plasma including Si4+ ions. The silicon treatment of the metal oxide layer helps fill the oxygen vacancies in the metal oxide channel layer, leading to a more stable TFT and preventing a negative threshold voltage in the TFT.
    Type: Grant
    Filed: March 13, 2020
    Date of Patent: August 30, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jose-Ignacio Del-Agua-Borniquel, Hendrik F. W. Dekkers, Hans Van Meer, Jae Young Lee
  • Publication number: 20210288186
    Abstract: Methods and apparatus for forming a thin film transistor (TFT) having a metal oxide layer. The method may include forming an amorphous metal oxide layer and treating the metal oxide layer with a silicon containing gas or plasma including Si4+ ions. The silicon treatment of the metal oxide layer helps fill the oxygen vacancies in the metal oxide channel layer, leading to a more stable TFT and preventing a negative threshold voltage in the TFT.
    Type: Application
    Filed: March 13, 2020
    Publication date: September 16, 2021
    Inventors: Jose-Ignacio Del-Agua-Borniquel, Hendrik F.W. Dekkers, Hans Van Meer, Jae Young Lee
  • Patent number: 11075083
    Abstract: A method for forming a gate stack of a field-effect transistor includes depositing a Si capping layer on a Ge channel material (100). The method further includes depositing an oxide layer on the Si capping layer by a plasma enhanced deposition technique at a temperature less than or equal to 200° C., and a plasma power less than or equal to 100 W.
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: July 27, 2021
    Assignee: IMEC vzw
    Inventors: Hiroaki Arimura, Antony Premkumar Peter, Hendrik F. W. Dekkers
  • Publication number: 20210164091
    Abstract: A method for forming a film of an oxide of In, Ga, and Zn, having a spinel crystalline phase comprises providing a substrate in a chamber; providing a sputtering target in said chamber, the target comprising an oxide of In, Ga, and Zn, wherein: In, Ga, and Zn represent together at least 95 at % of the elements other than oxygen, In represents from 0.6 to 44 at % of In, Ga, and Zn, Ga represents from 22 to 66 at % of In, Ga, and Zn, and Zn represents from 20 to 46 at % of In, Ga, and Zn; and forming a film on the substrate, the substrate being at a temperature of from 125° C. to 250° C., by sputtering the target with a sputtering gas comprising O2, the sputtering being performed at a sputtering power of at least 200 W.
    Type: Application
    Filed: November 25, 2020
    Publication date: June 3, 2021
    Applicants: IMEC VZW, Applied Materials Inc.
    Inventors: Hendrik F.W. Dekkers, Jose Ignacio del Agua Borniquel
  • Publication number: 20200203168
    Abstract: A method for forming a gate stack of a field-effect transistor includes depositing a Si capping layer on a Ge channel material (100). The method further includes depositing an oxide layer on the Si capping layer by a plasma enhanced deposition technique at a temperature less than or equal to 200° C., and a plasma power less than or equal to 100 W.
    Type: Application
    Filed: November 22, 2019
    Publication date: June 25, 2020
    Inventors: Hiroaki Arimura, Antony Premkumar Peter, Hendrik F.W. Dekkers
  • Patent number: 10607896
    Abstract: The disclosed technology generally relates to semiconductor devices and more particularly to a gate structure for a semiconductor device, and to methods of forming the same. In an aspect a method for forming a gate structure includes forming a first set of one or more semiconductor features and a second set of one or more semiconductor features. The method additionally includes forming a sacrificial gate extending across the semiconductor features of the first set and the semiconductor features of the second set.
    Type: Grant
    Filed: May 10, 2017
    Date of Patent: March 31, 2020
    Assignee: IMEC vzw
    Inventors: Lars-Ake Ragnarsson, Hendrik F.W. Dekkers, Tom Schram, Julien Ryckaert, Naoto Horiguchi, Mustafa Badaroglu
  • Patent number: 9892923
    Abstract: The disclosed technology generally relates to integrated circuit devices and methods of forming the same, and more particularly to metal electrodes whose effective work function can be tuned. In one aspect, a method of forming a metal electrode of a semiconductor structure includes providing a semiconductor substrate having at least a region covered with a dielectric. The semiconductor substrate is introduced into a chamber configured for atomic layer deposition (ALD). A metal for the metal electrode is deposited at least on the dielectric by performing an ALD cycle. Performing the ALD cycle includes pulsing a Ti-containing precursor gas followed by pulsing a Ta-containing precursor gas, and further includes pulsing NH3 gas.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: February 13, 2018
    Assignee: IMEC vzw
    Inventors: Hendrik F. W. Dekkers, Lars-Ake Ragnarsson, Tom Schram
  • Publication number: 20170330801
    Abstract: The disclosed technology generally relates to semiconductor devices and more particularly to a gate structure for a semiconductor device, and to methods of forming the same. In an aspect a method for forming a gate structure includes forming a first set of one or more semiconductor features and a second set of one or more semiconductor features. The method additionally includes forming a sacrificial gate extending across the semiconductor features of the first set and the semiconductor features of the second set.
    Type: Application
    Filed: May 10, 2017
    Publication date: November 16, 2017
    Inventors: Lars-Ake Ragnarsson, Hendrik F.W. Dekkers, Tom Schram, Julien Ryckaert, Naoto Horiguchi, Mustafa Badaroglu
  • Publication number: 20160196976
    Abstract: The disclosed technology generally relates to integrated circuit devices and methods of forming the same, and more particularly to metal electrodes whose effective work function can be tuned. In one aspect, a method of forming a metal electrode of a semiconductor structure includes providing a semiconductor substrate having at least a region covered with a dielectric. The semiconductor substrate is introduced into a chamber configured for atomic layer deposition (ALD). A metal for the metal electrode is deposited at least on the dielectric by performing an ALD cycle. Performing the ALD cycle includes pulsing a Ti-containing precursor gas followed by pulsing a Ta-containing precursor gas, and further includes pulsing NH3 gas.
    Type: Application
    Filed: December 22, 2015
    Publication date: July 7, 2016
    Inventors: Hendrik F.W. DEKKERS, Lars-Ake RAGNARSSON, Tom SCHRAM
  • Patent number: 9287273
    Abstract: The disclosed technology generally relates a semiconductor device comprising transistors, and more particularly to a semiconductor device comprising transistors each having a gate stack with a different effective work function, and methods of fabricating such a device. In one aspect, the method of fabricating the semiconductor comprises providing at least two channel regions in the substrate and providing a dielectric layer on the substrate. The method additionally includes forming a plurality of gate regions by providing openings in the dielectric layer. The method further includes providing a gate dielectric layer in the openings and providing on the gate dielectric layer of each of the gate regions a barrier layer stack having different thickness along the different gate regions.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: March 15, 2016
    Assignee: IMEC VZW
    Inventors: Lars-Ake Ragnarsson, Tom Schram, Hendrik F. W. Dekkers, Soon Aik Chew
  • Publication number: 20150357244
    Abstract: The disclosed technology generally relates a semiconductor device comprising transistors, and more particularly to a semiconductor device comprising transistors each having a gate stack with a different effective work function, and methods of fabricating such a device. In one aspect, the method of fabricating the semiconductor comprises providing at least two channel regions in the substrate and providing a dielectric layer on the substrate. The method additionally includes forming a plurality of gate regions by providing openings in the dielectric layer. The method further includes providing a gate dielectric layer in the openings and providing on the gate dielectric layer of each of the gate regions a barrier layer stack having different thickness along the different gate regions.
    Type: Application
    Filed: June 8, 2015
    Publication date: December 10, 2015
    Inventors: Lars-Ake Ragnarsson, Tom Schram, Hendrik F.W. Dekkers, Soon Aik Chew