Patents by Inventor Hendrik G. A. Huizing

Hendrik G. A. Huizing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7923339
    Abstract: The invention relates to the manufacture of an epitaxial layer, with the following steps: providing a semiconductor substrate; providing a Si—Ge layer on the semiconductor substrate, having a first depth; —providing the semiconductor substrate with a doped layer with an n-type dopant material and having a second depth substantially greater than said first depth; performing an oxidation step to form a silicon dioxide layer such that Ge atoms and n-type atoms are pushed into the semiconductor substrate by the silicon dioxide layer at the silicon dioxide/silicon interface, wherein the n-type atoms are pushed deeper into the semiconductor substrate than the Ge atoms, resulting in a top layer with a reduced concentration of n-type atoms; removing the silicon dioxide layer; growing an epitaxial layer of silicon on the semiconductor substrate with a reduced outdiffusion or autodoping.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: April 12, 2011
    Assignee: NXP B.V.
    Inventors: Philippe Meunier-Beillard, Hendrik G. A. Huizing
  • Patent number: 7911822
    Abstract: The present invention relates to an integrated circuit comprising a plurality of bitlines (b1) and a plurality of word-lines (w1) as well as a plurality of memory-cells (MC) coupled between a separate bit-line/word-line pair of the plurality of bit-lines (b1) and wordlines (w1) for storing data in the memory cell. Each memory cell (MC) comprises a selecting unit (T) and a programmable resistance (R). The value of the phase-change resistance (R) is greater than the value of a first phase-change resistance (Ropt) defined by a supply voltage (Vdd) divided by a maximum drive current (Im) through said first phase-change resistor (Ropt).
    Type: Grant
    Filed: October 17, 2005
    Date of Patent: March 22, 2011
    Assignee: NXP B.V.
    Inventors: Martijn H. R. Lankhorst, Hendrik G. A. Huizing
  • Patent number: 7660180
    Abstract: A thermally programmable memory has a programmable element (20) of a thermally programmable resistance preferably of phase change material, material and a blown antifuse (80) located adjacent to the programmable material. Such a blown antifuse has a dielectric layer (100) surrounded by conductive layers (90, 110) to enable a brief high voltage to be applied across the dielectric to blow a small hole in the dielectric during manufacture to form a small conductive path which can be used as a tiny electrical heater for programming the material. Due to the current confinement by the hole, the volume of the material that must be heated in order to switch to a highly-resistive state is very small. As a result the programming power can be low.
    Type: Grant
    Filed: November 24, 2005
    Date of Patent: February 9, 2010
    Assignee: NXP B.V.
    Inventors: Hans M. B. Boeve, Karen Attenborough, Godefridus A. M. Hurkx, Prabhat Agarwal, Hendrik G. A. Huizing, Michael A. A. In'T Zandt, Jan W. Slotboom
  • Publication number: 20090305488
    Abstract: The invention relates to the manufacture of an epitaxial layer, with the following steps: providing a semiconductor substrate; providing a Si—Ge layer on the semiconductor substrate, having a first depth; —providing the semiconductor substrate with a doped layer with an n-type dopant material and having a second depth substantially greater than said first depth; performing an oxidation step to form a silicon dioxide layer such that Ge atoms and n-type atoms are pushed into the semiconductor substrate by the silicon dioxide layer at the silicon dioxide/silicon interface, wherein the n-type atoms are pushed deeper into the semiconductor substrate than the Ge atoms, resulting in a top layer with a reduced concentration of n-type atoms; removing the silicon dioxide layer; growing an epitaxial layer of silicon on the semiconductor substrate with a reduced outdiffusion or autodoping.
    Type: Application
    Filed: November 29, 2005
    Publication date: December 10, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Philippe Meunier-Beillard, Hendrik G.A. Huizing
  • Publication number: 20080144355
    Abstract: A thermally programmable memory has a programmable element (20) of a thermally programmable resistance preferably of phase change material, material and a blown antifuse (80) located adjacent to the programmable material. Such a blown antifuse has a dielectric layer (100) surrounded by conductive layers (90, 110) to enable a brief high voltage to be applied across the dielectric to blow a small hole in the dielectric during manufacture to form a small conductive path which can be used as a tiny electrical heater for programming the material. Due to the current confinement by the hole, the volume of the material that must be heated in order to switch to a highly-resistive state is very small. As a result the programming power can be low.
    Type: Application
    Filed: November 24, 2005
    Publication date: June 19, 2008
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Hans M.B. Boeve, Karen Attenborough, Godefridus A.M. Hurkx, Prabhat Agarwal, Hendrik G.A. Huizing, Michael A.A. In'T Zandt, Jan W. Slotboom
  • Patent number: 6459133
    Abstract: The invention relates to a so-called punch-through diode with a mesa (12) comprising, in succession, a first (1), a second (2) and a third (3) semiconductor region (1) of, respectively, a first, a second and the first conductivity type, which punch-through diode is provided with two connection conductors (5, 6). During operation of said diode, a voltage is applied such that the second semiconductor region (2) is fully depleted. A drawback of the known punch-through diode resides in that the current flow is too large at lower voltages. In a punch-through diode according to the invention, a part (2A, 2B) of the second semiconductor region (2), which, viewed in projection, borders on the edge of the mesa (12), is provided with a larger flux of doping atoms of the second conductivity type than the remainder (2A) of the second semiconductor region (2).
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: October 1, 2002
    Assignee: Koninklijke Phillips Electronics N.V.
    Inventors: Adam R. Brown, Godefridus A. M. Hurkx, Wiebe B. De Boer, Hendrik G. A. Huizing, Eddie Huang
  • Patent number: 6417526
    Abstract: The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4). Such a device can very suitably be used as a switching element, in particular as a switching element for a high voltage and/or high power. In the known device, the silicon-germanium mixed crystal is relaxed, leading to the formation of misfit dislocations. These serve to reduce the service life of the minority charge carriers, thus enabling the device to be switched very rapidly.
    Type: Grant
    Filed: April 8, 1999
    Date of Patent: July 9, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Adam R. Brown, Godefridus A. M. Hurkx, Michael S. Peter, Hendrik G. A. Huizing, Wiebe B. De Boer
  • Publication number: 20020005558
    Abstract: The invention relates to a semiconductor device having a rectifying junction (5) which is situated between two (semiconductor) regions (1, 2) of an opposite conductivity type. The second region (2), which includes silicon, is thicker and has a smaller doping concentration than the first region (1) which includes a sub-region comprising a mixed crystal of silicon and germanium. The two regions (1, 2) are each provided with a connection conductor (3, 4).
    Type: Application
    Filed: April 8, 1999
    Publication date: January 17, 2002
    Inventors: ADAM R. BROWN, GODEFRIDUS A.M. HURKX, MICHAEL S. PETER, HENDRIK G.A. HUIZING, WIEBE B. DE BOER