Patents by Inventor Hendrik Jan Hidde Smilde

Hendrik Jan Hidde Smilde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10739687
    Abstract: In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 11, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Bastiaan Onne Fagginger Auer, Davit Harutyunyan, Patrick Warnaar
  • Patent number: 10725386
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: July 28, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Scott Anderson Middlebrooks, Niels Geypen, Hendrik Jan Hidde Smilde, Alexander Straaijer, Maurits Van Der Schaar, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 10718604
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: July 21, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Publication number: 20200133140
    Abstract: Techniques for determining a value of a parameter of interest of a patterning process are described. One such technique involves obtaining a plurality of calibration data units from one or more targets in a metrology process. Each calibration data unit of at least two of the calibration data units represents detected radiation obtained using different respective polarization settings in the metrology process, each polarization setting defining a polarization property of incident radiation of the metrology process and of detected radiation of the metrology process. The calibration data units are used to obtain calibration information about the metrology process. A measurement data unit representing detected radiation scattered from a further target is obtained, the further target having a structure formed using the patterning process on the substrate or on a further substrate. A value of the parameter of interest is determined using the measurement data unit and the obtained calibration information.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 30, 2020
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Patrick WARNAAR, Hilko Dirk BOS, Hendrik Jan Hidde SMILDE, Mohammadreza HAJIAHMADI, Lukasz Jerzy MACHT, Karel Hendrik Wouter VAN DEN BOS, Sergei SOKOLOV, Lucas Tijn KUNNEMAN
  • Publication number: 20200073254
    Abstract: A substrate has first and second target structures formed thereon by a lithographic process. Each target structure has two-dimensional periodic structure formed in a single material layer on a substrate using first and second lithographic steps, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount that is close to one half of a spatial period of the features formed in the first lithographic step, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount close to one half of said spatial period and different to the first bias amount.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Maurits VAN DER SCHAAR, Youping ZHANG, Hendrik Jan Hidde SMILDE, Anagnostis TSIATMAS, Adriaan Johan VAN LEEST, Alok VERMA, Thomas THEEUWES, Hugo Augustinus Joseph CRAMER, Paul Christiaan HINNEN
  • Publication number: 20200057386
    Abstract: A method of determining an estimated intensity of radiation scattered by a target illuminated by a radiation source, has the following steps: obtaining and training (402) a library REFLIB of wavelength-dependent reflectivity as a function of the wavelength, target structural parameters and angle of incidence R(?,?,x,y); determining (408) a wide-band library (W-BLIB) of integrals of wavelength-dependent reflectivity R of the target in a Jones framework over a range of radiation source wavelengths ?; training (TRN) (410) the wide-band library; and determining (412), using the trained wide-band library, an estimated intensity (INT) of radiation scattered by the target illuminated by the radiation source.
    Type: Application
    Filed: August 13, 2019
    Publication date: February 20, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Seyed Iman MOSSAVAT, Remco DIRKS, Hendrik Jan Hidde SMILDE
  • Patent number: 10481503
    Abstract: A substrate has first and second target structures formed by a lithographic process. Each target structure has a two-dimensional periodic structure formed in a single layer using first and second lithographic steps. The first target structure has features defined in the second lithographic step displaced relative to features defined in the first lithographic step by a first bias amount. The second target structure has features defined in the second lithographic step displaced relative to features defined in the first lithographic step by a second bias amount. An angle-resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained. A measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 19, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Youping Zhang, Hendrik Jan Hidde Smilde, Anagnostis Tsiatmas, Adriaan Johan Van Leest, Alok Verma, Thomas Theeuwes, Hugo Augustinus Joseph Cramer, Paul Christiaan Hinnen
  • Publication number: 20190346256
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 14, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria VAN BUEL, Christophe David FOUQUET, Hendrik Jan Hidde SMILDE, Maurits VAN DER SCHAAR, Arie Jeffrey DEN BOEF, Richard Johannes Franciscus VAN HAREN, Xing Lan LIU, Johannes Marcus Maria BELTMAN, Andreas FUCHS, Orner Abubaker Orner ADAM, Michael KUBIS, Martin Jacobus Johan JAK
  • Publication number: 20190278190
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 12, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Scott Anderson MIDDLEBROOKS, Niels GEYPEN, Hendrik Jan Hidde SMILDE, Alexander STRAAIJER, Maurits VAN DER SCHAAR, Markus Gerardus Martinus Maria VAN KRAAIJ
  • Patent number: 10386176
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: August 20, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 10331041
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: June 25, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Scott Anderson Middlebrooks, Niels Geypen, Hendrik Jan Hidde Smilde, Alexander Straaijer, Maurits Van Der Schaar, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 10331043
    Abstract: A method of devising a target arrangement, and associated target and reticle. The target includes a plurality of gratings, each grating having a plurality of substructures. The method includes: defining a target area; locating the substructures within the target area so as to form the gratings; and locating assist features at the periphery of the gratings, the assist features being configured to reduce measured intensity peaks at the periphery of the gratings. The method may include an optimization process including modelling a resultant image obtained by inspection of the target using a metrology process; and evaluating whether the target arrangement is optimized for detection using a metrology process.
    Type: Grant
    Filed: January 29, 2015
    Date of Patent: June 25, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Henricus Wilhelmus Maria Van Buel, Johannes Marcus Maria Beltman, Xing Lan Liu, Hendrik Jan Hidde Smilde, Richard Johannes Franciscus Van Haren
  • Publication number: 20190094712
    Abstract: In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
    Type: Application
    Filed: November 9, 2018
    Publication date: March 28, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde SMILDE, Bastiaan Onne FAGGINGER AUER, Davit HARUTYUNYAN, Patrick WARNAAR
  • Publication number: 20190049860
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Scott Anderson MIDDLEBROOKS, Niels GEYPEN, Hendrik Jan Hidde SMILDE, Alexander STRAAIJER, Maurits VAN DER SCHAAR, Markus Gerardus Martinus Maria VAN KRAAIJ
  • Patent number: 10162272
    Abstract: A substrate has a plurality of overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values, each of the overall asymmetry measurements being weighted by a corresponding weight factor. Each one of the weight factors represents a measure of feature asymmetry within the respective overlay grating. The calculation is used to improve subsequent performance of the measurement process, and/or the lithographic process. Some of the asymmetry measurements may additionally be weighted by a second weight factor in order to eliminate or reduce the contribution of phase asymmetry to the overlay.
    Type: Grant
    Filed: August 18, 2016
    Date of Patent: December 25, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Martin Jacobus Johan Jak, Hendrik Jan Hidde Smilde, Te-Chih Huang, Victor Emanuel Calado, Henricus Wilhelmus Maria Van Buel, Richard Johannes Franciscus Van Haren
  • Patent number: 10162271
    Abstract: In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: December 25, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Bastiaan Onne Fagginger Auer, Davit Harutyunyan, Patrick Warnaar
  • Patent number: 10126662
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: November 13, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Scott Anderson Middlebrooks, Niels Geypen, Hendrik Jan Hidde Smilde, Alexander Straaijer, Maurits Van Der Schaar, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 10042268
    Abstract: A substrate has three or more overlay gratings formed thereon by a lithographic process. Each overlay grating has a known overlay bias. The values of overlay bias include for example two values in a region centered on zero and two values in a region centered on P/2, where P is the pitch of the gratings. Overlay is calculated from asymmetry measurements for the gratings using knowledge of the different overlay bias values and an assumed non-linear relationship between overlay and target asymmetry, thereby to correct for feature asymmetry. The periodic relationship in the region of zero bias and P/2 has gradients of opposite sign. The calculation allows said gradients to have different magnitudes as well as opposite sign. The calculation also provides information on feature asymmetry and other processing effects. This information is used to improve subsequent performance of the measurement process, and/or the lithographic process.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 7, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Arie Jeffrey Den Boef, Omer Abubaker Omer Adam, Martin Jacobus Johan Jak
  • Publication number: 20180196357
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Applicant: ASML Netherlands B.V.
    Inventors: Scott Anderson Middlebrooks, Niels Geypen, Hendrik Jan Hidde Smilde, Alexander Straaijer, Maurits Van Der Schaar, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 9946167
    Abstract: Methods are disclosed for measuring target structures formed by a lithographic process on a substrate. A grating structure within the target is smaller than an illumination spot and field of view of a measurement optical system. The optical system has a first branch leading to a pupil plane imaging sensor and a second branch leading to a substrate plane imaging sensor. A spatial light modulator is arranged in an intermediate pupil plane of the second branch of the optical system. The SLM imparts a programmable pattern of attenuation that may be used to correct for asymmetries between the first and second modes of illumination or imaging. By use of specific target designs and machine-learning processes, the attenuation patterns may also be programmed to act as filter functions, enhancing sensitivity to specific parameters of interest, such as focus.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: April 17, 2018
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Arno Jan Bleeker, Willem Marie Julia Marcel Coene, Patrick Warnaar, Michael Kubis