Patents by Inventor Hendrik Jan Hidde Smilde

Hendrik Jan Hidde Smilde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230016664
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: July 26, 2022
    Publication date: January 19, 2023
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 11526085
    Abstract: In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: December 13, 2022
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Hendrik Jan Hidde Smilde, Bastiaan Onne Fagginger Auer, Davit Harutyunyan, Patrick Warnaar
  • Patent number: 11466980
    Abstract: A lithographic process is used to form a plurality of target structures distributed at a plurality of locations across a substrate and having overlaid periodic structures with a number of different overlay bias values distributed across the target structures. At least some of the target structures comprising a number of overlaid periodic structures (e.g., gratings) that is fewer than said number of different overlay bias values. Asymmetry measurements are obtained for the target structures. The detected asymmetries are used to determine parameters of a lithographic process. Overlay model parameters including translation, magnification and rotation, can be calculated while correcting the effect of bottom grating asymmetry, and using a multi-parameter model of overlay error across the substrate.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: October 11, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Kaustuve Bhattacharyya, Hendrik-Jan Hidde Smilde
  • Patent number: 11428521
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: November 5, 2021
    Date of Patent: August 30, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 11392043
    Abstract: A method of determining an estimated intensity of radiation scattered by a target illuminated by a radiation source, has the following steps: obtaining and training (402) a library REFLIB of wavelength-dependent reflectivity as a function of the wavelength, target structural parameters and angle of incidence R(?,?,x,y); determining (408) a wide-band library (W-BLIB) of integrals of wavelength-dependent reflectivity R of the target in a Jones framework over a range of radiation source wavelengths ?; training (TRN) (410) the wide-band library; and determining (412), using the trained wide-band library, an estimated intensity (INT) of radiation scattered by the target illuminated by the radiation source.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: July 19, 2022
    Assignee: ASML Netherlands B.V.
    Inventors: Seyed Iman Mossavat, Remco Dirks, Hendrik Jan Hidde Smilde
  • Publication number: 20220057192
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: November 5, 2021
    Publication date: February 24, 2022
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria VAN BUEL, Christophe David FOUQUET, Hendrik Jan Hidde SMILDE, Maurits VAN DER SCHAAR, Arie Jeffrey DEN BOEF, Richard Johannes Franciscus VAN HAREN, Xing Lan LIU, Johannes Marcus Maria BELTMAN, Andreas FUCHS, Omer Abubaker Omer ADAM, Michael KUBIS, Martin Jacobus Johan JAK
  • Patent number: 11204239
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: December 21, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 11181828
    Abstract: Techniques for determining a value of a parameter of interest of a patterning process are described. One such technique involves obtaining a plurality of calibration data units from one or more targets in a metrology process. Each calibration data unit of at least two of the calibration data units represents detected radiation obtained using different respective polarization settings in the metrology process, each polarization setting defining a polarization property of incident radiation of the metrology process and of detected radiation of the metrology process. The calibration data units are used to obtain calibration information about the metrology process. A measurement data unit representing detected radiation scattered from a further target is obtained, the further target having a structure formed using the patterning process on the substrate or on a further substrate. A value of the parameter of interest is determined using the measurement data unit and the obtained calibration information.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: November 23, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Patrick Warnaar, Hilko Dirk Bos, Hendrik Jan Hidde Smilde, Mohammadreza Hajiahmadi, Lukasz Jerzy Macht, Karel Hendrik Wouter Van Den Bos, Sergei Sokolov, Lucas Tijn Kunneman
  • Patent number: 11092900
    Abstract: A substrate has first and second target structures formed thereon by a lithographic process. Each target structure has two-dimensional periodic structure formed in a single material layer on a substrate using first and second lithographic steps, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount that is close to one half of a spatial period of the features formed in the first lithographic step, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount close to one half of said spatial period and different to the first bias amount.
    Type: Grant
    Filed: November 6, 2019
    Date of Patent: August 17, 2021
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Youping Zhang, Hendrik Jan Hidde Smilde, Anagnostis Tsiatmas, Adriaan Johan Van Leest, Alok Verma, Thomas Theeuwes, Hugo Augustinus Joseph Cramer, Paul Christiaan Hinnen
  • Publication number: 20200379359
    Abstract: In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
    Type: Application
    Filed: August 10, 2020
    Publication date: December 3, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde SMILDE, Bastiaan Onne FAGGINGER AUER, Davit HARUTYUNYAN, Patrick WARNAAR
  • Publication number: 20200348125
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: July 17, 2020
    Publication date: November 5, 2020
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Patent number: 10739687
    Abstract: In a dark-field metrology method using a small target, a characteristic of an image of the target, obtained using a single diffraction order, is determined by fitting a combination fit function to the measured image. The combination fit function includes terms selected to represent aspects of the physical sensor and the target. Some coefficients of the combination fit function are determined based on parameters of the measurement process and/or target. In an embodiment the combination fit function includes jinc functions representing the point spread function of a pupil stop in the imaging system.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 11, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Hendrik Jan Hidde Smilde, Bastiaan Onne Fagginger Auer, Davit Harutyunyan, Patrick Warnaar
  • Patent number: 10725386
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: July 28, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Scott Anderson Middlebrooks, Niels Geypen, Hendrik Jan Hidde Smilde, Alexander Straaijer, Maurits Van Der Schaar, Markus Gerardus Martinus Maria Van Kraaij
  • Patent number: 10718604
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Grant
    Filed: July 10, 2019
    Date of Patent: July 21, 2020
    Assignee: ASML Netherlands B.V.
    Inventors: Kaustuve Bhattacharyya, Henricus Wilhelmus Maria Van Buel, Christophe David Fouquet, Hendrik Jan Hidde Smilde, Maurits Van Der Schaar, Arie Jeffrey Den Boef, Richard Johannes Franciscus Van Haren, Xing Lan Liu, Johannes Marcus Maria Beltman, Andreas Fuchs, Omer Abubaker Omer Adam, Michael Kubis, Martin Jacobus Johan Jak
  • Publication number: 20200133140
    Abstract: Techniques for determining a value of a parameter of interest of a patterning process are described. One such technique involves obtaining a plurality of calibration data units from one or more targets in a metrology process. Each calibration data unit of at least two of the calibration data units represents detected radiation obtained using different respective polarization settings in the metrology process, each polarization setting defining a polarization property of incident radiation of the metrology process and of detected radiation of the metrology process. The calibration data units are used to obtain calibration information about the metrology process. A measurement data unit representing detected radiation scattered from a further target is obtained, the further target having a structure formed using the patterning process on the substrate or on a further substrate. A value of the parameter of interest is determined using the measurement data unit and the obtained calibration information.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 30, 2020
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Patrick WARNAAR, Hilko Dirk BOS, Hendrik Jan Hidde SMILDE, Mohammadreza HAJIAHMADI, Lukasz Jerzy MACHT, Karel Hendrik Wouter VAN DEN BOS, Sergei SOKOLOV, Lucas Tijn KUNNEMAN
  • Publication number: 20200073254
    Abstract: A substrate has first and second target structures formed thereon by a lithographic process. Each target structure has two-dimensional periodic structure formed in a single material layer on a substrate using first and second lithographic steps, wherein, in the first target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a first bias amount that is close to one half of a spatial period of the features formed in the first lithographic step, and, in the second target structure, features defined in the second lithographic step are displaced relative to features defined in the first lithographic step by a second bias amount close to one half of said spatial period and different to the first bias amount.
    Type: Application
    Filed: November 6, 2019
    Publication date: March 5, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Maurits VAN DER SCHAAR, Youping ZHANG, Hendrik Jan Hidde SMILDE, Anagnostis TSIATMAS, Adriaan Johan VAN LEEST, Alok VERMA, Thomas THEEUWES, Hugo Augustinus Joseph CRAMER, Paul Christiaan HINNEN
  • Publication number: 20200057386
    Abstract: A method of determining an estimated intensity of radiation scattered by a target illuminated by a radiation source, has the following steps: obtaining and training (402) a library REFLIB of wavelength-dependent reflectivity as a function of the wavelength, target structural parameters and angle of incidence R(?,?,x,y); determining (408) a wide-band library (W-BLIB) of integrals of wavelength-dependent reflectivity R of the target in a Jones framework over a range of radiation source wavelengths ?; training (TRN) (410) the wide-band library; and determining (412), using the trained wide-band library, an estimated intensity (INT) of radiation scattered by the target illuminated by the radiation source.
    Type: Application
    Filed: August 13, 2019
    Publication date: February 20, 2020
    Applicant: ASML Netherlands B.V.
    Inventors: Seyed Iman MOSSAVAT, Remco DIRKS, Hendrik Jan Hidde SMILDE
  • Patent number: 10481503
    Abstract: A substrate has first and second target structures formed by a lithographic process. Each target structure has a two-dimensional periodic structure formed in a single layer using first and second lithographic steps. The first target structure has features defined in the second lithographic step displaced relative to features defined in the first lithographic step by a first bias amount. The second target structure has features defined in the second lithographic step displaced relative to features defined in the first lithographic step by a second bias amount. An angle-resolved scatter spectrum of the first target structure and an angle-resolved scatter spectrum of the second target structure is obtained. A measurement of a parameter of a lithographic process is derived from the measurements using asymmetry found in the scatter spectra of the first and second target structures.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: November 19, 2019
    Assignee: ASML Netherlands B.V.
    Inventors: Maurits Van Der Schaar, Youping Zhang, Hendrik Jan Hidde Smilde, Anagnostis Tsiatmas, Adriaan Johan Van Leest, Alok Verma, Thomas Theeuwes, Hugo Augustinus Joseph Cramer, Paul Christiaan Hinnen
  • Publication number: 20190346256
    Abstract: A diffraction measurement target that has at least a first sub-target and at least a second sub-target, and wherein (1) the first and second sub-targets each include a pair of periodic structures and the first sub-target has a different design than the second sub-target, the different design including the first sub-target periodic structures having a different pitch, feature width, space width, and/or segmentation than the second sub-target periodic structure or (2) the first and second sub-targets respectively include a first and second periodic structure in a first layer, and a third periodic structure is located at least partly underneath the first periodic structure in a second layer under the first layer and there being no periodic structure underneath the second periodic structure in the second layer, and a fourth periodic structure is located at least partly underneath the second periodic structure in a third layer under the second layer.
    Type: Application
    Filed: July 10, 2019
    Publication date: November 14, 2019
    Applicant: ASML NETHERLANDS B.V.
    Inventors: Kaustuve BHATTACHARYYA, Henricus Wilhelmus Maria VAN BUEL, Christophe David FOUQUET, Hendrik Jan Hidde SMILDE, Maurits VAN DER SCHAAR, Arie Jeffrey DEN BOEF, Richard Johannes Franciscus VAN HAREN, Xing Lan LIU, Johannes Marcus Maria BELTMAN, Andreas FUCHS, Orner Abubaker Orner ADAM, Michael KUBIS, Martin Jacobus Johan JAK
  • Publication number: 20190278190
    Abstract: Disclosed is a method of measuring a parameter of a lithographic process, and associated inspection apparatus. The method comprises measuring at least two target structures on a substrate using a plurality of different illumination conditions, the target structures having deliberate overlay biases; to obtain for each target structure an asymmetry measurement representing an overall asymmetry that includes contributions due to (i) the deliberate overlay biases, (ii) an overlay error during forming of the target structure and (iii) any feature asymmetry. A regression analysis is performed on the asymmetry measurement data by fitting a linear regression model to a planar representation of asymmetry measurements for one target structure against asymmetry measurements for another target structure, the linear regression model not necessarily being fitted through an origin of the planar representation. The overlay error can then be determined from a gradient described by the linear regression model.
    Type: Application
    Filed: May 24, 2019
    Publication date: September 12, 2019
    Applicant: ASML Netherlands B.V.
    Inventors: Scott Anderson MIDDLEBROOKS, Niels GEYPEN, Hendrik Jan Hidde SMILDE, Alexander STRAAIJER, Maurits VAN DER SCHAAR, Markus Gerardus Martinus Maria VAN KRAAIJ