Patents by Inventor Hendrik Johannes Conroy

Hendrik Johannes Conroy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140086281
    Abstract: Methods and systems for processing signals in a wireless communication system are disclosed. Aspects of the method may include calculating at a receiver, a plurality of energy values corresponding to a plurality of signal paths detected within a communication channel. At least one of the plurality of detected signal paths may be selected for processing based on a pre-defined threshold and a dynamic threshold, in order to achieve a desired probability of misdetection and a desired probability of false alarm. The probability of misdetection is a probability that a real signal path is missed, and the probability of false alarm is a probability of detecting a false signal path. A slot boundary, a frame boundary, and/or a scrambling code may be determined for signals communicated via said plurality of signal paths.
    Type: Application
    Filed: November 25, 2013
    Publication date: March 27, 2014
    Applicant: BROADCOM CORPORATION
    Inventors: Li Fung CHANG, Hendrik Johannes CONROY, Severine CATREUX-ERCEG
  • Publication number: 20120128108
    Abstract: Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
    Type: Application
    Filed: November 22, 2011
    Publication date: May 24, 2012
    Applicant: Broadcom Corporation
    Inventors: Hendrik Johannes Conroy, Joseph Boccuzzi
  • Patent number: 8068568
    Abstract: Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
    Type: Grant
    Filed: January 12, 2011
    Date of Patent: November 29, 2011
    Assignee: Broadcom Corporation
    Inventors: Hendrik Johannes Conroy, Joseph Boccuzzi
  • Patent number: 8031757
    Abstract: A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 4, 2011
    Assignee: Broadcom Corporation
    Inventors: Louis Jacobus Botha, Frederic Christian Hayem, Hendrik Johannes Conroy
  • Publication number: 20110110466
    Abstract: Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
    Type: Application
    Filed: January 12, 2011
    Publication date: May 12, 2011
    Inventors: Hendrik Johannes Conroy, Joseph Boccuzzi
  • Patent number: 7894404
    Abstract: A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: February 22, 2011
    Assignee: Broadcom Corporation
    Inventors: Mark David Hahm, Wei Luo, Hendrik Johannes Conroy
  • Patent number: 7885319
    Abstract: A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: February 8, 2011
    Assignee: Broadcom Corporation
    Inventors: Mark David Hahm, Wei Luo, Li Fung Chang, Nelson R. Sollenberger, Hendrik Johannes Conroy
  • Patent number: 7885237
    Abstract: A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: February 8, 2011
    Assignee: Broadcom Corporation
    Inventors: Mark David Hahm, Wei Luo, Hendrik Johannes Conroy
  • Patent number: 7873125
    Abstract: Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 18, 2011
    Assignee: Broadcom Corporation
    Inventors: Hendrik Johannes Conroy, Joseph Boccuzzi
  • Publication number: 20100265995
    Abstract: A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
    Type: Application
    Filed: June 25, 2010
    Publication date: October 21, 2010
    Applicant: BROADCOM CORPORATION
    Inventors: LOUIS JACOBUS BOTHA, FREDERIC CHRISTIAN HAYEM, HENDRIK JOHANNES CONROY
  • Patent number: 7756193
    Abstract: A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: July 13, 2010
    Assignee: Broadcom Corporation
    Inventors: Louis Jacobus Botha, Frederic Christian Marc Hayem, Hendrik Johannes Conroy
  • Publication number: 20090034589
    Abstract: A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
    Type: Application
    Filed: September 10, 2007
    Publication date: February 5, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Mark David Hahm, Wei Luo, Li Fung Chang, Nelson R. Sollenberger, Hendrik Johannes Conroy
  • Publication number: 20090034490
    Abstract: A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 5, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Mark David Hahm, Wei Luo, Hendrik Johannes Conroy
  • Publication number: 20090034482
    Abstract: A wireless terminal is operable to receive a Wideband Code Division Multiple Access (WCDMA) signal from a base station and includes clock circuitry, a wireless interface, and a Primary Synchronization (PSYNC) module. The clock circuitry generates a wireless terminal clock using a wireless terminal oscillator. The wireless interface receives the WCDMA signal, which is produced by the base station using a base station clock that is produced using a base station oscillator that is more accurate than the wireless terminal oscillator. The PSYNC module includes a plurality of PSYNC correlation branches. Each PSYNC correlation branch phase rotates the WCDMA signal based upon a respective frequency offset, correlates the phase rotated WCDMA signal with a Primary Synchronization Channel (PSCH) code over a plurality of sampling positions, and produces PSYNC correlation energies based upon the correlations for each of the plurality of sampling positions.
    Type: Application
    Filed: August 23, 2007
    Publication date: February 5, 2009
    Applicant: BROADCOM CORPORATION
    Inventors: Mark David Hahm, Wei Luo, Hendrik Johannes Conroy
  • Publication number: 20080130802
    Abstract: Aspects of a method and system for a sliding window phase estimator for wideband code division multiple access (WCDMA) automatic frequency correction are presented. Aspects of the system may include one or more circuits that enable adjustment of a current demodulation frequency for receiving at least one subsequent symbol based on a computed weighted sum of a plurality of computed frequency error values. Each of the plurality of computed frequency error values may be derived from a current symbol, a corresponding previous symbol, and/or a previous frequency error value. The current symbol may include a current received symbol segment and one or more previously received symbol segments.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Hendrik Johannes Conroy, Joseph Boccuzzi
  • Publication number: 20080130606
    Abstract: Methods and systems for processing signals in a wireless communication system are disclosed. Aspects of the method may include calculating at a receiver, a plurality of energy values corresponding to a plurality of signal paths detected within a communication channel. At least one of the plurality of detected signal paths may be selected for processing based on a pre-defined threshold and a dynamic threshold, in order to achieve a desired probability of misdetection and a desired probability of false alarm. The probability of misdetection is a probability that a real signal path is missed, and the probability of false alarm is a probability of detecting a false signal path. A slot boundary, a frame boundary, and/or a scrambling code may be determined for signals communicated via said plurality of signal paths.
    Type: Application
    Filed: November 30, 2006
    Publication date: June 5, 2008
    Inventors: Li Fung Chang, Hendrik Johannes Conroy, Severine Catreus-Erceg
  • Publication number: 20080075149
    Abstract: A method for operating a Radio Frequency (RF) receiver of a wireless terminal. During a first time interval, an RF front end is enabled and the RF receiver receives and processes an RF signal, e.g., a Wideband Code Division Multiple Access (WCDMA) signal, to produce a baseband signal and to store samples of the baseband signal. During a second time interval that differs from the first time interval, the RF front end is disabled and the RF receiver processes the plurality of samples of the baseband signal of the first time interval to measure signal strengths of a plurality of pilot signals present in the baseband signal of the first time interval. Finally, during a third time interval that differs from the first time interval and the second time interval, the RF front end is enabled and the RF receiver receives and processes an RF signal of the third time interval to extract data there from. Memory is shared between the first, second, and third time intervals for different uses.
    Type: Application
    Filed: September 21, 2006
    Publication date: March 27, 2008
    Applicant: Broadcom Corporation, a California Corporation
    Inventors: Louis Jacobus Botha, Frederic Christian Hayem, Hendrik Johannes Conroy