Patents by Inventor Hendrik Volkerink

Hendrik Volkerink has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11580826
    Abstract: Embodiments disclosed herein generally relate to line-powered wireless communications systems, and more specifically to methods and apparatus for providing persistent and ubiquitous wireless communications and sensor networks in physical premises to enable a wide variety of different applications and use cases.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: February 14, 2023
    Inventors: Hendrik Volkerink, Ajay Khoche
  • Patent number: 11512836
    Abstract: The illumination module for emitting light (5) can operate in at least two different modes, wherein in each of the modes, the emitted light (5) has a different light distribution. The module has a mode selector (10) for selecting the mode in which the module operates, and it has an optical arrangement. The arrangement includes—a microlens array (LL1) with a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P (P1);—an illuminating unit for illuminating the microlens array (LL1). The illuminating unit includes a first array of light sources (S1) operable to emit light of a first wavelength L1 each and having an aperture each. The apertures are located in a common emission plane which is located at a distance D (D1) from the microlens array (LL1). In a first one of the modes, for the lens pitch P, the distance D and the wavelength L1 applies P2=2·L1·D/N wherein N is an integer with N?1.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: November 29, 2022
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Markus Rossi, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Patent number: 10509147
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: December 17, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Patent number: 10497141
    Abstract: A brightness image of a scene is converted into a corresponding frequency domain image and it is determined whether a threshold condition is satisfied for each of one or more regions of interest in the frequency domain image, the threshold condition being that the number of frequencies in the region of interest is at least as high as a threshold value. The results of the determination can be used to facilitate selection of an appropriate block matching algorithm for deriving disparity or other distance data and/or to control adjustment of an illumination source that generates structured light for the scene.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: December 3, 2019
    Assignee: AMS SENSORS SINGAPORE PTE. LTD.
    Inventors: Chi Zhang, Alireza Yasan, Hendrik Volkerink
  • Patent number: 10298570
    Abstract: Optoelectronic systems include an array of optoelectronic modules and a computational unit. The array of optoelectronic modules and the computational unit are operable to collect data of a user of the optoelectronic system. The data can be used, for example, to authenticate the identity of the user by being used in multiple user authentication protocols. In some instances, facial recognition data can be augmented with three-dimensional data of the user and can be combined with iris recognition data to authenticate the identity of the user. Such optoelectronic systems can comprise hardware authentication systems external to auxiliary devices such as tablet computers and laptop computers.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: May 21, 2019
    Assignee: ams Sensors Singapore Pte. Ltd.
    Inventors: Yibin Tian, Hendrik Volkerink
  • Publication number: 20190107627
    Abstract: The present disclosure describes an optoelectronic system and methods for efficiently capturing three-dimensional data. The optoelectronic system includes a three-dimensional imaging module and a distance measuring module. Data collected via the distance measuring module is used to collect three-dimensional data, such as three-dimensional maps or other representations of three-dimensional objects. Further, the approach can be extended to multiple regions of interest, and can be applied to the acquisition of biometric data.
    Type: Application
    Filed: February 16, 2017
    Publication date: April 11, 2019
    Inventors: Yibin Tian, Hendrik Volkerink
  • Publication number: 20190049097
    Abstract: The illumination module for emitting light (5) can operate in at least two different modes, wherein in each of the modes, the emitted light (5) has a different light distribution. The module has a mode selector (10) for selecting the mode in which the module operates, and it has an optical arrangement. The arrangement includes—a microlens array (LL1) with a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P (P1);—an illuminating unit for illuminating the microlens array (LL1). The illuminating unit includes a first array of light sources (S1) operable to emit light of a first wavelength L1 each and having an aperture each. The apertures are located in a common emission plane which is located at a distance D (D1) from the microlens array (LL1). In a first one of the modes, for the lens pitch P, the distance D and the wavelength L1 applies P2=2·L1·D/N wherein N is an integer with N?1.
    Type: Application
    Filed: January 24, 2017
    Publication date: February 14, 2019
    Inventors: Markus Rossi, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Publication number: 20190005671
    Abstract: A brightness image of a scene is converted into a corresponding frequency domain image and it is determined whether a threshold condition is satisfied for each of one or more regions of interest in the frequency domain image, the threshold condition being that the number of frequencies in the region of interest is at least as high as a threshold value. The results of the determination can be used to facilitate selection of an appropriate block matching algorithm for deriving disparity or other distance data and/or to control adjustment of an illumination source that generates structured light for the scene.
    Type: Application
    Filed: December 23, 2016
    Publication date: January 3, 2019
    Inventors: Chi Zhang, Alireza Yasan, Hendrik Volkerink
  • Publication number: 20180267214
    Abstract: An apparatus for producing structured light comprises a first optical arrangement which comprises a microlens array (L1) comprising a multitude of transmissive or reflective microlenses (2) which are regularly arranged at a lens pitch P and an illumination unit for illuminating the microlens array. The illumination unit comprises an array (S1) of light sources (1) for emitting light of a wavelength L each and having an aperture each, wherein the apertures are located in a common emission plane which is located at a distance D from the microlens array. For the lens pitch P, the distance D and the wavelength L, the following equation applies P2=2LD/N, wherein N is an integer with N?1. High-contrast high-intensity light patterns can be produced. Devices comprising such apparatuses can be used for depth mapping.
    Type: Application
    Filed: January 26, 2016
    Publication date: September 20, 2018
    Inventors: Markus Rossi, Hans Peter Herzig, Philipp Mueller, Ali Naqavi, Daniel Infante Gomez, Moshe Doron, Matthias Gloor, Alireza Yasan, Hartmut Rudmann, Martin Lukas Balimann, Mai-Lan Elodie Boytard, Bassam Hallal, Daniel Pérez Calero, Julien Boucart, Hendrik Volkerink
  • Publication number: 20180164970
    Abstract: The present disclosure describes automated optimization of user interfaces that can be customized to the needs of a particular user or group of users based on the user habits while using a mobile or other app. The available paths within an app, each of which represents a sequence of user interactions and screens that lead to a respective result, can be modified dynamically in an automated fashion based on the user's habits such that the interface presented to the particular user (or group of users) is tailored to the individual's or group's particular habits.
    Type: Application
    Filed: December 14, 2017
    Publication date: June 14, 2018
    Applicant: RF Digital Corporation
    Inventor: Hendrik Volkerink
  • Publication number: 20170257366
    Abstract: Optoelectronic systems include an array of optoelectronic modules and a computational unit. The array of optoelectronic modules and the computational unit are operable to collect data of a user of the optoelectronic system. The data can be used, for example, to authenticate the identity of the user by being used in multiple user authentication protocols. In some instances, facial recognition data can be augmented with three-dimensional data of the user and can be combined with iris recognition data to authenticate the identity of the user. Such optoelectronic systems can comprise hardware authentication systems external to auxiliary devices such as tablet computers and laptop computers.
    Type: Application
    Filed: March 2, 2017
    Publication date: September 7, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Yibin Tian, Hendrik Volkerink