Patents by Inventor Henk Visser
Henk Visser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20140081099Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.Type: ApplicationFiled: May 14, 2013Publication date: March 20, 2014Applicant: SOTERA WIRELESS, INC.Inventors: Matthew J. Banet, Marshal Singh Dhillon, Andrew Stanley Terry, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming
-
Patent number: 8574161Abstract: A method and apparatus for measuring a patient's blood pressure featuring the following steps: 1) measuring a time-dependent optical waveform with an optical sensor; 2) measuring a time-dependent electrical signal with an electrical sensor; 3) estimating the patient's arterial properties using the optical waveform; 4) determining a pulse transit time (PTT) from the time-dependent electrical signal and the time-dependent optical waveform; and 5) calculating a blood pressure value using a mathematical model that includes the PTT and the patient's arterial properties.Type: GrantFiled: June 12, 2008Date of Patent: November 5, 2013Assignee: Sotera Wireless, Inc.Inventors: Matthew J. Banet, Zhou Zhou, Marshal Singh Dhillon, Robert J. Kopotic, Andrew Stanley Terry, Henk Visser, II
-
Patent number: 8527038Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: GrantFiled: September 15, 2009Date of Patent: September 3, 2013Assignee: Sotera Wireless, Inc.Inventors: Jim Moon, Henk Visser, Robert Hunt
-
Patent number: 8506480Abstract: A body-worn sensor that measures respiratory rate and other vital signs using an acoustic sensor (e.g., a small-scale sensor). The body-worn sensor features a chest-worn patch sensor that combines both the acoustic sensor and an ECG electrode into a single adhesive patch. To measure blood pressure, the device additionally performs a ‘composite’ PTT-based measurement that features both pressure-dependent and pressure-free measurements. The acoustic sensor measures respiration rate by recording sounds related to the patient's inspiration and expiration. The acoustic sensor is typically placed near the patient's trachea, but can also be placed on the middle right and left side of the chest, and the middle right and left side of the back.Type: GrantFiled: July 11, 2008Date of Patent: August 13, 2013Assignee: Sotera Wireless, Inc.Inventors: Matthew J. Banet, Zhou Zhou, Robert J. Kopotic, Marshal Singh Dhillon, Andrew Stanley Terry, Henk Visser, II
-
Patent number: 8442607Abstract: The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.Type: GrantFiled: September 7, 2006Date of Patent: May 14, 2013Assignee: Sotera Wireless, Inc.Inventors: Matthew John Banet, Michael James Thompson, Zhou Zhou, Henk Visser, II, Adam Michael Fleming, Marshal Singh Dhillon, Andrew Stanley Terry
-
Patent number: 8419649Abstract: A method and apparatus for continuous measurement of blood pressure, based on pulse transit time, which does not require any external calibration. This technique, referred to herein as the ‘composite technique’, is carried out with a body-won sensor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of disposable sensors, typically placed on the patient's right arm and chest, connect to the body sensor and measure a time-dependent electrical waveform, optical waveform, and pressure waveform. The disposable sensors typically include an armband that features an inflatable bladder coupled to a pressure sensor, at least 3 electrical sensors (e.g. electrodes), and an optical sensor (e.g., a light source and photodiode) attached to a wrist-worn band.Type: GrantFiled: June 12, 2008Date of Patent: April 16, 2013Assignee: Sotera Wireless, Inc.Inventors: Matthew J. Banet, Zhou Zhou, Marshal Singh Dhillon, Robert J. Kopotic, Andrew Stanley Terry, Henk Visser, II
-
Patent number: 8364250Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: GrantFiled: September 15, 2009Date of Patent: January 29, 2013Assignee: Sotera Wireless, Inc.Inventors: Jim Moon, Henk Visser, Robert Hunt, Marshal Dhillon, Devin McCombie, Matt Banet
-
Patent number: 8321004Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: GrantFiled: September 15, 2009Date of Patent: November 27, 2012Assignee: Sotera Wireless, Inc.Inventors: Jim Moon, Henk Visser, Robert Hunt
-
BODY-WORN SENSOR FEATURING A LOW-POWER PROCESSOR AND MULTI-SENSOR ARRAY FOR MEASURING BLOOD PRESSURE
Publication number: 20120108983Abstract: A system is described that continuously measures a patient's blood pressure over a length of time. The system features a sensor assembly featuring a flexible cable configured to wrap around a portion of a patient's arm. The flexible cable features a back surface that includes at least two electrodes that are positioned to contact the patient's skin to generate electrical signals. It additionally features an optical sensor that includes at least one light source and at least one photodetector. These components form an optical sensor that is configured to generate an optical signal by detecting optical radiation emitted by the at least one light source and reflected from a blood vessel underneath the patient's skin.Type: ApplicationFiled: January 9, 2012Publication date: May 3, 2012Applicant: Sotera Wireless, Inc.Inventors: Matthew J. Banet, Zhou Zhou, Kenneth Robert Hunt, Henk Visser, II -
Patent number: 7993275Abstract: The invention features a monitoring device that measures a patient's vital signs (e.g. blood pressure). The device features a first sensor configured to attach to a first portion of the patient's body that includes: i) a first electrode configured to generate a first electrical signal from the first portion of the patient's body; ii) a first light-emitting component; and iii) a first photodetector configured to receive radiation from the first portion of the patient's body after the radiation is emitted by the first light-emitting component and in response generate a first optical waveform. The device also features a second sensor that includes essentially the same components. An amplifier system, in electrical contact with the first and second electrodes, receives first and second electrical signals from the two sensors to generate an electrical waveform.Type: GrantFiled: May 25, 2006Date of Patent: August 9, 2011Assignee: Sotera Wireless, Inc.Inventors: Matthew John Banet, Michael James Thompson, Zhou Zhou, Henk Visser, II
-
Publication number: 20110066045Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Inventors: Jim MOON, Henk VISSER, Robert HUNT
-
Publication number: 20110066010Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Inventors: Jim MOON, Henk VISSER, Robert HUNT
-
Publication number: 20110066009Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Inventors: Jim Moon, Henk Visser, Robert Hunt
-
Publication number: 20110066051Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Inventors: Jim MOON, Henk VISSER, Robert HUNT, Devin McCOMBIE, Marshal DHILLON, Matt BANET
-
Publication number: 20110066050Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Inventors: Jim Moon, Henk Visser, Robert Hunt
-
Publication number: 20110066044Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.Type: ApplicationFiled: September 15, 2009Publication date: March 17, 2011Inventors: Jim MOON, Henk VISSER, Robert HUNT, Devin McCOMBIE, Marshal DHILLON, Matt BANET
-
Patent number: 7803120Abstract: The invention features a monitoring device that measures a patient's vital signs (e.g.). The device features a first sensor configured to attach to a first portion of the patient's body that includes: i)a first electrode configured to generate a first electrical signal fron the first portion of the patient's body; ii)a first light-emitting component; and iii)a first photodetector configured to receive radiation from the first portion of the patient's body after the radiation is emitted by the first light-emiting component and in response generate a first optical waveform. The device also features a second sensor that includes essentially the same components. An amplifier system, in electrical contact with the first and second electrodes, receives first and second electrical signal from the two sensors to generate an electrical waveform. A processor, in electrical contact with the amplifier system, receives the electrical waveform, the first optical waveform, and the second optical waveform.Type: GrantFiled: May 27, 2006Date of Patent: September 28, 2010Assignee: Sotera Wireless, Inc.Inventors: Matthew John Banet, Michael James Thompson, Zhou Zhou, Henk Visser, II
-
Publication number: 20100130875Abstract: A system for measuring a blood pressure value from a patient features a sensor configured to be worn on the patient's thumb. The sensor includes one or two light sources that emit optical radiation, and a photodetector that detects the optical radiation after it passes through a portion of a vessel (e.g. an artery or capillary) in the patient's thumb to generate a first time-dependent signal (e.g. a PPG waveform). In embodiments the sensor is made from a flexible material that wraps around a portion of the patient's thumb (e.g. the base) while leaving the thumb's tip uncovered. This configuration is less awkward than most finger-worn sensors, and allows the patient to comfortably go about their day-to-day activities (e.g. reading, eating) with little obstruction. The system also includes at least two electrodes that are configured to be worn on the patient's body and detect electrical signals that are processed by an electrical circuit to generate a second time-dependent signal (e.g. an ECG waveform).Type: ApplicationFiled: June 18, 2009Publication date: May 27, 2010Applicant: TRIAGE WIRELESS, INC.Inventors: Matthew J. BANET, Kenneth R. HUNT, Henk VISSER, II
-
Patent number: 7658716Abstract: The invention provides a system for measuring blood pressure from a patient that includes: 1) an optical module configured to be worn on the patient's ear and comprising at least one optical source and a photodetector; 2) a calibration source configured to make a blood pressure measurement; and, 3) a processing module configured to: i) receive a first signal from the optical module; ii) receive a second signal from the calibration source; iii) process the first and second signals to generate a calibration table; and iv) receive a third signal from the optical module and compare it to the calibration table to determine the patient's blood pressure.Type: GrantFiled: December 7, 2004Date of Patent: February 9, 2010Assignee: Triage Wireless, Inc.Inventors: Matthew John Banet, Brett George Morris, Henk Visser
-
Publication number: 20090018409Abstract: A body-worn sensor that measures respiratory rate and other vital signs using an acoustic sensor (e.g., a small-scale sensor). The body-worn sensor features a chest-worn patch sensor that combines both the acoustic sensor and an ECG electrode into a single adhesive patch. To measure blood pressure, the device additionally performs a ‘composite’ PTT-based measurement that features both pressure-dependent and pressure-free measurements. The acoustic sensor measures respiration rate by recording sounds related to the patient's inspiration and expiration. The acoustic sensor is typically placed near the patient's trachea, but can also be placed on the middle right and left side of the chest, and the middle right and left side of the back.Type: ApplicationFiled: July 11, 2008Publication date: January 15, 2009Applicant: TRIAGE WIRELESS, INC.Inventors: Matthew J. Banet, Zhou Zhou, Robert J. Kopotic, Marshal Singh Dhillon, Andrew S. Terry, Henk Visser, II