Patents by Inventor Henning Bülow

Henning Bülow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9231702
    Abstract: A technique is provided for an optical multiple input multiple output (MIMO) processing system.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: January 5, 2016
    Assignee: Alcatel Lucent
    Inventor: Henning Buelow
  • Patent number: 8958704
    Abstract: The invention relates to a method of generating a feedback signal for adjusting a polarization mode dispersion compensator (PMDC, 21) in a transmission system with alternate-polarization. A first signal (37) is determined by measuring a spectral component of the radio frequency modulation of an optical signal (33) at a particular radio frequency. Preferably, the radio frequency essentially corresponds to half the symbol rate of the optical signal (33). Also a second signal (35) is determined by coupling the optical signal (33) into a delay line interferometer (DLI, 50) having a delay essentially corresponding to the symbol period or an odd multiple of the symbol period between its arms (51, 54). Downstream of the DLI (50), the signal is optical-to-electrically converted. Downstream of the optical-to-electrical conversion, an intensity measurement is performed. The first (37) and second (35) signals are then combined to generate the feedback signal (28).
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: February 17, 2015
    Assignee: Alcatel Lucent
    Inventors: Axel Klekamp, Henning Bülow
  • Patent number: 8855504
    Abstract: An optical receiver has an adaptive optical compensator and/or an adaptive electrical equalizer for compensating signal distortion in a received optical signal. In order to achieve a very fast adaptation of the receiver to the actual signal distortion, which is important for example for bursts mode optical signals in a packet-switched optical transmission network, at least one predetermined trainings sequence is provided in the optical signal, which is known at the receiver and thus enables fast adaptation of the compensator and/or equalizer to the actual signal distortion.
    Type: Grant
    Filed: June 23, 2004
    Date of Patent: October 7, 2014
    Assignee: Alcatel Lucent
    Inventor: Henning Bülow
  • Publication number: 20140286648
    Abstract: A technique is provided for an optical multiple input multiple output (MIMO) processing system.
    Type: Application
    Filed: November 6, 2012
    Publication date: September 25, 2014
    Inventor: Henning Buelow
  • Patent number: 8634724
    Abstract: The invention relates to the field of optical transmission systems. In particular, the invention relates to a system and a method for adjusting an optical OFDM transmission system in a power optimized manner. An optical OFDM transmitter (310) operating at an overall bit-rate is provided. It comprises an adjustable mapping unit (314) associated with one of N OFDM subcarriers, operable to map M bits of a digital input signal (360) into a constellation point, thereby yielding a subcarrier signal of the corresponding OFDM subcarrier. Furthermore, it comprises an adjustable transformation unit (315, 316), operable to transform the subcarrier signal to yield an electrical output signal. In addition, the OFDM transmitter comprises an electrical-to-optical converter (324, 325), operable to convert the electrical output signal into an optical output signal.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: January 21, 2014
    Assignee: Alcatel Lucent
    Inventor: Henning Buelow
  • Patent number: 8494373
    Abstract: An apparatus (PMDC) for compensating polarization mode dispersion for an optical transmission fiber (TF) for transmission of optical signals, said optical signals having a first polarization component (x pol) and a orthogonal second polarization component (y pol) comprises tuneable means (PC1, DL1, PC2, DL2) adapted to compensating said fiber polarization mode dispersion. It further comprises a feedback signal generator (FSG) adapted to generating a feedback input signal for said tuneable means (PC1, DL1, PC2, DL2) for polarization mode dispersion compensation. Said feedback signal generator (FSG) comprises polarization means for converting said transmitted optical signal to at least two optical signal components with different defined states of polarization. It has further transforming means for transforming said optical signal components into electrical signal components, wherein each electrical signal component representing one of said defined states of polarization.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: July 23, 2013
    Assignee: Alcatel Lucent
    Inventors: Henning Buelow, Pierre Jaeger
  • Publication number: 20110305462
    Abstract: The invention relates to the field of optical transmission systems. In particular, the invention relates to a system and a method for adjusting an optical OFDM transmission system in a power optimized manner An optical OFDM transmitter (310) operating at an overall bit-rate is provided. It comprises an adjustable mapping unit (314) associated with one of N OFDM subcarriers, operable to map M bits of a digital input signal (360) into a constellation point, thereby yielding a subcarrier signal of the corresponding OFDM subcarrier. Furthermore, it comprises an adjustable transformation unit (315, 316), operable to transform the subcarrier signal to yield an electrical output signal. In addition, the OFDM transmitter comprises an electrical-to-optical converter (324, 325), operable to convert the electrical output signal into an optical output signal.
    Type: Application
    Filed: February 8, 2010
    Publication date: December 15, 2011
    Inventor: Henning Buelow
  • Patent number: 8073338
    Abstract: A modulation method for optical communication comprises the step of generating an optical signal modulated between a plurality of different states of polarization and between different phase states. The plurality of states of polarization comprises first states of polarization. The first states of polarization define a single great circle on the Poincaré sphere. The method is characterized in that the plurality of states of polarization further comprise one or more second states of polarization located outside the great circle. Such additional second states of polarization increase the symbol alphabet.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: December 6, 2011
    Assignee: Alcatel Lucent
    Inventor: Henning Buelow
  • Publication number: 20110229143
    Abstract: An apparatus (PMDC) for compensating polarization mode dispersion for an optical transmission fiber (TF) for transmission of optical signals, said optical signals having a first polarization component (x pol) and a orthogonal second polarization component (y pol) comprises tuneable means (PC1, DL1, PC2, DL2) adapted to compensating said fiber polarization mode dispersion. It further comprises a feedback signal generator (FSG) adapted to generating a feedback input signal for said tuneable means (PC1, DL1, PC2, DL2) for polarization mode dispersion compensation. Said feedback signal generator (FSG) comprises polarization means for converting said transmitted optical signal to at least two optical signal components with different defined states of polarization. It has further transforming means for transforming said optical signal components into electrical signal components, wherein each electrical signal component representing one of said defined states of polarization.
    Type: Application
    Filed: November 28, 2008
    Publication date: September 22, 2011
    Inventors: Henning Buelow, Pierre Jaeger
  • Publication number: 20110182572
    Abstract: The invention relates to a method of generating a feedback signal for adjusting a polarization mode dispersion compensator (PMDC, 21) in a transmission system with alternate-polarization. A first signal (37) is determined by measuring a spectral component of the radio frequency modulation of an optical signal (33) at a particular radio frequency. Preferably, the radio frequency essentially corresponds to half the symbol rate of the optical signal (33). Also a second signal (35) is determined by coupling the optical signal (33) into a delay line interferometer (DLI, 50) having a delay essentially corresponding to the symbol period or an odd multiple of the symbol period between its arms (51, 54). Downstream of the DLI (50), the signal is optical-to-electrically converted. Downstream of the optical-to-electrical conversion, an intensity measurement is performed. The first (37) and second (35) signals are then combined to generate the feedback signal (28).
    Type: Application
    Filed: November 7, 2008
    Publication date: July 28, 2011
    Inventors: Axel Klekamp, Henning Bülow
  • Publication number: 20090257755
    Abstract: A modulation method for optical communication comprises the step of generating an optical signal modulated between a plurality of different states of polarization and between different phase states. The plurality of states of polarization comprises first states of polarization. The first states of polarization define a single great circle on the Poincaré sphere. The method is characterized in that the plurality of states of polarization further comprise one or more second states of polarization located outside the great circle. Such additional second states of polarization increase the symbol alphabet.
    Type: Application
    Filed: April 2, 2009
    Publication date: October 15, 2009
    Inventor: Henning Buelow
  • Patent number: 7546040
    Abstract: A fiber optical system (10) for transmitting an optical signal comprises an optical fiber line (1) with a plurality of successively arranged polarization scramblers (6a to 6c) for polarization modulation of the optical signal transmitted through the optical fiber line (1) and a reference frequency signal (11) which synchronizes scrambling frequencies of all of the polarization scramblers (6a to 6c) to a common reference frequency.
    Type: Grant
    Filed: December 12, 2005
    Date of Patent: June 9, 2009
    Assignee: ALCATEL
    Inventor: Henning Bülow
  • Patent number: 7486898
    Abstract: A receiver (10) for an optical signal containing a time jitter and a time-varying distortion caused by a periodic polarization scrambled signal comprises at least one decision gate (11) and a clock recovery module (13) providing a clock signal (C) recovered from the optical signal to the at least one decision gate (11). The receiver (10) further comprises a scrambling frequency generator (16) synchronized to the scrambling frequency and phase of the polarization scrambled signal, a jitter function generator (17) generating a clock phase control signal (??b) reproducing the time jitter, and at least one clock phase modulator (14) modulating the phase of the clock signal (C) according to the clock phase control signal (??b).
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: February 3, 2009
    Assignee: Alcatel
    Inventor: Henning Bülow
  • Patent number: 7295774
    Abstract: A method for estimating at least one optical link parameter using a Viterbi equalizer (1) generating averaged values (M) of signal amplitudes of a distorted optical signal transmitted through an optical link (2) for a set of decided bit patterns (a, b, c, d, . . . ), the method comprising the following steps: forming a first parameter set (S) characteristic of a distorted signal sequence using the averaged values (M(a), M(b), M(d), M(g)) for a given sequence (abdg) of bit patterns (a, b, c, d, . . . ), comparing the first parameter set (S) to a plurality of reference parameter sets (R1, R2, . . . ) characteristic for reference signal sequences of the same sequence (abdg) of bit patterns (a, b, c, d, . . . ), each of the reference parameter sets (R1, R2, . . .
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: November 13, 2007
    Assignee: Alcatel
    Inventor: Henning Bülow
  • Patent number: 7289739
    Abstract: A polarization mode dispersion (PMD) controller device for controlling the state of polarization of an optical light wave comprising a dispersion compensation unit (2; 25; 40) and an adaptation control unit (6; 28; 44), wherein the dispersion compensation unit (2; 25; 40) comprises a multitude of compensation stages processing the optical light wave, and wherein the adaptation control unit (6; 28; 44) controls the dispersion compensation unit (2; 25; 40) is characterized in that at least one feed-forward signal tap (4; 26a-26c, 73a-73c) is provided tapping the optical light wave inserted into one of the compensation stages, that the feed-forward signal(s) is(are) fed into a distortion analyzer unit (5; 27; 66) and that the distortion analyzer unit (5; 27; 66) provides the adaptation control unit (6; 28; 44) with information about the incoming optical light wave. It accelerates the adaptation speed and lowers the costs of a high-speed PMD controller device.
    Type: Grant
    Filed: November 19, 2003
    Date of Patent: October 30, 2007
    Assignee: Alcatel
    Inventors: Henning Bülow, Fred Buchali
  • Patent number: 7257290
    Abstract: The present invention concerns a method for performing optical dispersion compensation of wavelength division multiplexed (WDM) optical signals. The method comprises the steps of providing a compensation stage with an optical transmission medium to be used as parallel operating cascade of polarization controllers and optical birefringent elements to compensate dispersion of the WDM optical signals when being transmitted spectrally dispersed into the different wavelength channels in parallel through the parallel cascades. The method is being characterized by determining the chromatic dispersion of the optical signals at one or few different wavelength channels possibly allowing an extrapolation of the chromatic dispersion to the other wavelength channels for defining accordingly an additional feedback signal to be used for the polarization controller setting.
    Type: Grant
    Filed: April 4, 2005
    Date of Patent: August 14, 2007
    Assignee: Alcatel
    Inventor: Henning Bülow
  • Patent number: 7224900
    Abstract: An optical time multiplexer for generating an N Gbits/s output signal (36) from n data modulated input pulse streams (21, 22) with a pulse frequency of N/n GHz, where n?IN and n?2, with a combiner device for passively interleaving the n input pulse streams (21, 22) is characterized by at least n?1 first phase shifting elements (25) tuning the optical phases of at least n?1 input pulse streams (22) and being connected to a controller device (32), which derives at least n?1 control signals from a comparison of the optical phases of the n input pulse streams (21, 22) and controls the at least n?1 first phase shifting elements (25) such that the optical phases of all n input pulse streams (21, 22) are locked with respect to each other. This optical time multuplexer reduces the drifting penalty of ODTM signals due to multiplexer instability, it prohibits the broadening of RZ pulses, and it grants the possibility to easily generate carrier-suppressed RZ signals or similar modulation formats.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: May 29, 2007
    Assignee: Alcatel
    Inventor: Henning Bülow
  • Patent number: 6987804
    Abstract: A process is proposed for recovering disturbed digital signals, wherein the electrical signals pass through a feedback equalizer and an analogue control of the setting parameters of the equalizers is performed. A pseudo-error monitor, which facilitates a high-speed adjustment of decision element thresholds, is also provided.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: January 17, 2006
    Assignee: Alcatel
    Inventors: Fred Buchali, Henning Bülow
  • Patent number: 6842547
    Abstract: An integrated chromatic dispersion compensator for optical signals in optical communication networks, comprising a plurality of cascaded stages of optical dispersion elements arranged in the form of a lattice filter structure, is characterized by at least one tapping device disposed between consecutive stages of the optical dispersion elements for tapping inter stage signals, feeding each tapped inter stage signal into a separate feedback loop, which in turn is feeding adaptation parameters into at least one of the stages of the optical dispersion elements preceding the corresponding tapping device of the inter stage signal. The invention presents a compact dispersion compensator that can dynamically be adapted to varying dispersion situations and that is capable of compensating the chromatic dispersion of a multitude of data channels at the same time.
    Type: Grant
    Filed: July 25, 2003
    Date of Patent: January 11, 2005
    Assignee: Alcatel
    Inventor: Henning Bülow
  • Patent number: 6816635
    Abstract: The present invention provides an optical waveguide phase shifter that comprises a planar silicon-dioxide-containing optical glass waveguide whose core contains glass, and also a planar optical polymer waveguide whose core contains a polymer and/or a mixture of polymers, furthermore means that effect the change in the temperature of the planar optical polymer waveguide and wherein the refractive index of the planar optical polymer waveguide is greater than the refractive index of the planar silicon-dioxide-containing optical waveguide. The refractive indices of the planar optical polymer waveguide and of the silicon-dioxide-containing optical glass waveguide can consequently be matched even by a small increase in the temperature of the planar optical polymer waveguide. In addition, only the propagation constant of the optical field in a silicon-dioxide-containing optical waveguide according to the invention is influenced by the coupling mode between silicon-dioxide waveguide and polymer waveguide.
    Type: Grant
    Filed: December 23, 2002
    Date of Patent: November 9, 2004
    Assignee: Avanex Corporation
    Inventors: Axel Klekamp, Henning Bülow