Patents by Inventor Henning Hagman

Henning Hagman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11828704
    Abstract: Various techniques are provided for increasing contrast of gas features in a scene. In one example, a method includes receiving a captured infrared image comprising a gas feature and a scene feature. The captured infrared image comprises a first range of pixel values associated with a first temperature range of the gas feature and the scene feature. The method also includes applying a spatial filter to the captured infrared image to provide a spatially filtered infrared image retaining the gas feature and removing the scene feature. The spatially filtered infrared image comprises a second range of pixel values associated with a second temperature range of the gas feature without the additional scene feature to exhibit increased gas contrast over the captured infrared image. Additional methods and systems are also provided.
    Type: Grant
    Filed: June 11, 2020
    Date of Patent: November 28, 2023
    Assignee: FLIR Systems AB
    Inventor: Henning Hagman
  • Publication number: 20230366812
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 16, 2023
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20230126197
    Abstract: Various techniques are disclosed to provide for improved human body temperature detection using thermal images of an inner canthus. In one example, a method includes capturing a thermal image of a human being using a thermal imager. The method also includes determining an uncompensated temperature measurement associated with an inner canthus of a face of the human being using corresponding pixels of the thermal image. The method also includes determining a correction term as a function of a distance between the thermal imager and the human being. The method also includes applying the correction term to the uncompensated temperature measurement to provide a corrected temperature measurement associated with the inner canthus to compensate for attenuation associated with the distance. Additional methods and systems are also provided.
    Type: Application
    Filed: December 22, 2022
    Publication date: April 27, 2023
    Inventors: Henning Hagman, Tien C. Nguyen, Petra Maretic, Katrin Strandemar
  • Patent number: 11635370
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: April 25, 2023
    Assignee: FLIR Systems AB
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20230069029
    Abstract: Techniques are provided for variable sensitivity in infrared imaging. In one example, an infrared imaging system includes an infrared imager and a logic device. The infrared imager is configured to capture a first infrared image of a scene using a sensitivity setting. The logic device is configured to determine a temperature associated with the scene based on a second infrared image of the scene. The logic device is further configured to determine the sensitivity setting based on an ambient temperature associated with the infrared imager and the temperature associated with the scene. Related devices and methods are also provided.
    Type: Application
    Filed: August 17, 2022
    Publication date: March 2, 2023
    Inventors: Tien C. Nguyen, Henning Hagman
  • Patent number: 11415465
    Abstract: Improved techniques for thermal imaging and gas detection are provided. In one example, a system includes a first set of filters configured to pass first filtered infrared radiation comprising a first range of thermal wavelengths associated with a background portion of a scene. The system also includes a second set of filters configured to pass second filtered infrared radiation comprising a second range of thermal wavelengths associated with a gas present in the scene. The first and second ranges are independent of each other. The system also includes a sensor array comprising adjacent infrared sensors configured to separately receive the first and second filtered infrared radiation to capture first and second thermal images respectively corresponding to the background portion and the gas. Additional systems and methods are also provided.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: August 16, 2022
    Assignee: FLIR Systems AB
    Inventors: Henning Hagman, Marta Barenthin-Syberg
  • Publication number: 20220110528
    Abstract: Various techniques are disclosed to provide for improved human body temperature detection using thermal images of an inner canthus. In one example, a method includes capturing a thermal image of a human being using a thermal imager. The method also includes detecting a face and an inner canthus of the human being in the thermal image using an artificial neural network. The method also includes determining a temperature measurement of the inner canthus using corresponding pixels of the thermal image. The method also includes determining a body temperature of the human being using the temperature measurement. Additional methods and systems are also provided.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Inventors: Travis Frecker, Louis Tremblay, Charles Gelinas, Anton Gronholm, Julia Kogan, Ariel Nagauker, Henning Hagman, Petra Maretic, Tien C. Nguyen, Katrin Strandemar
  • Patent number: 11200697
    Abstract: An ambient temperature calibration process includes, in accordance with an embodiment, determining an ambient temperature calibration value for a global external resistance associated with a read out integrated circuit (ROIC) of an image capture component comprising a sensor array comprising a focal plane array of microbolometers arranged on the ROIC; determining an ambient temperature calibration value for a sensor integration time associated with the ROIC; and determining an ambient temperature calibration mapping for an offset mapping associated with the ROIC.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: December 14, 2021
    Assignee: FLIR Systems AB
    Inventors: Jonas Sandsten, Per Lilja, Henning Hagman, Marta Barenthin-Syberg, Tien Nguyen
  • Publication number: 20200393367
    Abstract: Various techniques are provided for increasing contrast of gas features in a scene. In one example, a method includes receiving a captured infrared image comprising a gas feature and a scene feature. The captured infrared image comprises a first range of pixel values associated with a first temperature range of the gas feature and the scene feature. The method also includes applying a spatial filter to the captured infrared image to provide a spatially filtered infrared image retaining the gas feature and removing the scene feature. The spatially filtered infrared image comprises a second range of pixel values associated with a second temperature range of the gas feature without the additional scene feature to exhibit increased gas contrast over the captured infrared image. Additional methods and systems are also provided.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 17, 2020
    Inventor: Henning Hagman
  • Publication number: 20200202569
    Abstract: An ambient temperature calibration process includes, in accordance with an embodiment, determining an ambient temperature calibration value for a global external resistance associated with a read out integrated circuit (ROIC) of an image capture component comprising a sensor array comprising a focal plane array of microbolometers arranged on the ROIC; determining an ambient temperature calibration value for a sensor integration time associated with the ROIC; and determining an ambient temperature calibration mapping for an offset mapping associated with the ROIC.
    Type: Application
    Filed: December 11, 2019
    Publication date: June 25, 2020
    Inventors: Jonas Sandsten, Per Lilja, Henning Hagman, Marta Barenthin-Syberg, Tien Nguyen
  • Publication number: 20200025679
    Abstract: An IR imaging device includes an optical element receiving infrared radiation from a scene, a filter blocking IR radiation outside of a particular range of wavelengths, an array of sensor pixels to capture an image of the scene based on infrared radiation received through the optical element and filter, the array of sensor pixels comprising a first array of sensor pixels to image gas in within a first spectral bandwidth, and a second array of sensor pixel to sense IR radiation in a second spectral bandwidth where gas is not detected, a read-out integrated circuit (ROIC) and logic circuitry to generate a first image sensed by the first array and a second image sensed by the second array, and gas detection logic to detect the presence of gas in the first image.
    Type: Application
    Filed: September 27, 2019
    Publication date: January 23, 2020
    Inventors: Hakan E. Nygren, Jonas Sandsten, Per Lilja, Marta Barenthin-Syberg, Henning Hagman, Eric A. Kurth, Brian B. Simolon, Naseem Y. Aziz, Ulf Wallgren
  • Publication number: 20190285477
    Abstract: Improved techniques for thermal imaging and gas detection are provided. In one example, a system includes a first set of filters configured to pass first filtered infrared radiation comprising a first range of thermal wavelengths associated with a background portion of a scene. The system also includes a second set of filters configured to pass second filtered infrared radiation comprising a second range of thermal wavelengths associated with a gas present in the scene. The first and second ranges are independent of each other. The system also includes a sensor array comprising adjacent infrared sensors configured to separately receive the first and second filtered infrared radiation to capture first and second thermal images respectively corresponding to the background portion and the gas. Additional systems and methods are also provided.
    Type: Application
    Filed: May 31, 2019
    Publication date: September 19, 2019
    Inventors: Henning Hagman, Marta Barenthin-Syberg