Patents by Inventor Henri Nykänen

Henri Nykänen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240053551
    Abstract: A wafer with a buried V-groove cavity, and a method for fabricating V-grooves. In some embodiments, the method includes bonding a first layer, to a top surface of a substrate, to form a composite wafer, the first layer being composed of a first semiconductor material, the substrate being composed of a second semiconductor material, the top surface of the substrate having a cavity, the cavity including a V-groove.
    Type: Application
    Filed: December 10, 2021
    Publication date: February 15, 2024
    Inventors: Janne Ikonen, John Paul Drake, Henri Nykänen, Damiana Lerose
  • Publication number: 20230019587
    Abstract: A semiconductor photodiode. The semiconductor photodiode including: an input waveguide, arranged to receive an optical signal at a first port and provide the optical signal from the second port; a photodiode waveguide, arranged to receive the optical signal from the second port of the input waveguide, and at least partially convert the optical signal into an electrical signal; and an electro-static defence component, located adjacent to the photodiode waveguide. The electro-static defence component and the photodiode waveguide are electrically connected in parallel.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 19, 2023
    Inventors: Guomin YU, Henri NYKÄNEN, Evie KHO
  • Patent number: 11513292
    Abstract: A mirror and method of fabricating the mirror, the method comprising: providing a silicon-on-insulator substrate, the substrate comprising: a silicon support layer; a buried oxide (BOX) layer on top of the silicon support layer; and a silicon device layer on top of the BOX layer; creating a via in the silicon device layer, the via extending to the BOX layer; etching away a portion of the BOX layer starting at the via and extending laterally away from the via in a first direction to create a channel between the silicon device layer and silicon support layer; applying an anisotropic etch via the channel to regions of the silicon device layer and silicon support layer adjacent to the channel; the anisotropic etch following an orientation plane of the silicon device layer and silicon support layer to create a cavity underneath an overhanging portion of the silicon device layer; the overhanging portion defining a planar underside surface for vertically coupling light into and out of the silicon device layer; and
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: November 29, 2022
    Inventors: Henri Nykänen, John Paul Drake, Evie Kho, Damiana Lerose, Sanna Leena Mäkelä, Amit Singh Nagra
  • Patent number: 11133225
    Abstract: An optical fiber adapter and method of fabricating the same from a wafer including a double silicon-on-insulator layer structure. The optical fiber adapter may include a mode converter, a trench, and a V-groove, the V-groove and the trench operating as passive alignment features for an optical fiber, in the transverse translational and rotational degrees of freedom, and in the longitudinal translational degree of freedom, respectively. The mode converter may include a buried tapered waveguide.
    Type: Grant
    Filed: May 1, 2020
    Date of Patent: September 28, 2021
    Assignee: Rockley Photonics Limited
    Inventors: John Drake, Damiana Lerose, Henri Nykänen, Gerald Cois Byrd
  • Publication number: 20200264372
    Abstract: A mirror and method of fabricating the mirror, the method comprising: providing a silicon-on-insulator substrate, the substrate comprising: a silicon support layer; a buried oxide (BOX) layer on top of the silicon support layer; and a silicon device layer on top of the BOX layer; creating a via in the silicon device layer, the via extending to the BOX layer; etching away a portion of the BOX layer starting at the via and extending laterally away from the via in a first direction to create a channel between the silicon device layer and silicon support layer; applying an anisotropic etch via the channel to regions of the silicon device layer and silicon support layer adjacent to the channel; the anisotropic etch following an orientation plane of the silicon device layer and silicon support layer to create a cavity underneath an overhanging portion of the silicon device layer; the overhanging portion defining a planar underside surface for vertically coupling light into and out of the silicon device layer; and a
    Type: Application
    Filed: May 4, 2020
    Publication date: August 20, 2020
    Inventors: Henri Nykänen, John Paul Drake, Evie Kho, Damiana Lerose, Sanna Leena Mäkelä, Amit Singh Nagra
  • Publication number: 20200258791
    Abstract: An optical fiber adapter and method of fabricating the same from a wafer including a double silicon-on-insulator layer structure. The optical fiber adapter may include a mode converter, a trench, and a V-groove, the V-groove and the trench operating as passive alignment features for an optical fiber, in the transverse translational and rotational degrees of freedom, and in the longitudinal translational degree of freedom, respectively. The mode converter may include a buried tapered waveguide.
    Type: Application
    Filed: May 1, 2020
    Publication date: August 13, 2020
    Inventors: John Drake, Damiana Lerose, Henri Nykänen, Gerald Cois Byrd
  • Publication number: 20200243397
    Abstract: An optical mode converter and method of fabricating the same from wafer including a double silicon-on-insulator layer structure. The method comprising: providing a first mask over a portion of a device layer of the DSOI layer structure; etching an unmasked portion of the device layer down to at least an upper buried oxide layer, to provide a cavity; etching a first isolation trench and a second isolation trench into a mode converter layer, the mode converter layer being: on an opposite side of the upper buried oxide layer to the device layer and between the upper buried oxide layer and a lower buried oxide layer, the lower buried oxide layer being above a substrate; wherein the first isolation trench and the second isolation trench define a tapered waveguide; filling the first isolation trench and the second isolation trench with an insulating material, so as to optically isolate the tapered waveguide from the remaining mode converter layer; and regrowing the etched region of the device layer.
    Type: Application
    Filed: April 13, 2020
    Publication date: July 30, 2020
    Inventors: John Drake, Damiana Lerose, Henri Nykänen
  • Patent number: 10643903
    Abstract: An optical mode converter and method of fabricating the same from wafer including a double silicon-on-insulator layer structure. The method comprising: providing a first mask over a portion of a device layer of the DSOI layer structure; etching an unmasked portion of the device layer down to at least an upper buried oxide layer, to provide a cavity; etching a first isolation trench and a second isolation trench into a mode converter layer, the mode converter layer being: on an opposite side of the upper buried oxide layer to the device layer and between the upper buried oxide layer and a lower buried oxide layer, the lower buried oxide layer being above a substrate; wherein the first isolation trench and the second isolation trench define a tapered waveguide; filling the first isolation trench and the second isolation trench with an insulating material, so as to optically isolate the tapered waveguide from the remaining mode converter layer; and regrowing the etched region of the device layer.
    Type: Grant
    Filed: July 13, 2017
    Date of Patent: May 5, 2020
    Assignee: Rockley Photonics Limited
    Inventors: John Drake, Damiana Lerose, Henri Nykänen
  • Patent number: 10641962
    Abstract: A mirror and method of fabricating the mirror, the method comprising: providing a silicon-on-insulator substrate, the substrate comprising: a silicon support layer; a buried oxide (BOX) layer on top of the silicon support layer; and a silicon device layer on top of the BOX layer; creating a via in the silicon device layer, the via extending to the BOX layer; etching away a portion of the BOX layer starting at the via and extending laterally away from the via in a first direction to create a channel between the silicon device layer and silicon support layer; applying an anisotropic etch via the channel to regions of the silicon device layer and silicon support layer adjacent to the channel; the anisotropic etch following an orientation plane of the silicon device layer and silicon support layer to create a cavity underneath an overhanging portion of the silicon device layer; the overhanging portion defining a planar underside surface for vertically coupling light into and out of the silicon device layer; and a
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: May 5, 2020
    Assignee: Rockley Photonics Limited
    Inventors: Henri Nykänen, John Paul Drake, Evie Kho, Damiana Lerose, Sanna Leena Mäkelä, Amit Singh Nagra
  • Publication number: 20190302366
    Abstract: A mirror and method of fabricating the mirror, the method comprising: providing a silicon-on-insulator substrate, the substrate comprising: a silicon support layer; a buried oxide (BOX) layer on top of the silicon support layer; and a silicon device layer on top of the BOX layer; creating a via in the silicon device layer, the via extending to the BOX layer; etching away a portion of the BOX layer starting at the via and extending laterally away from the via in a first direction to create a channel between the silicon device layer and silicon support layer; applying an anisotropic etch via the channel to regions of the silicon device layer and silicon support layer adjacent to the channel; the anisotropic etch following an orientation plane of the silicon device layer and silicon support layer to create a cavity underneath an overhanging portion of the silicon device layer; the overhanging portion defining a planar underside surface for vertically coupling light into and out of the silicon device layer; and a
    Type: Application
    Filed: March 28, 2019
    Publication date: October 3, 2019
    Inventors: Henri Nykänen, John Paul Drake, Evie Kho, Damiana Lerose, Sanna Leena Mäkelä, Amit Singh Nagra
  • Publication number: 20190243070
    Abstract: An optical mode converter and method of fabricating the same from wafer including a double silicon-on-insulator layer structure. The method comprising: providing a first mask over a portion of a device layer of the DSOI layer structure; etching an unmasked portion of the device layer down to at least an upper buried oxide layer, to provide a cavity; etching a first isolation trench and a second isolation trench into a mode converter layer, the mode converter layer being: on an opposite side of the upper buried oxide layer to the device layer and between the upper buried oxide layer and a lower buried oxide layer, the lower buried oxide layer being above a substrate; wherein the first isolation trench and the second isolation trench define a tapered waveguide; filling the first isolation trench and the second isolation trench with an insulating material, so as to optically isolate the tapered waveguide from the remaining mode converter layer; and regrowing the etched region of the device layer.
    Type: Application
    Filed: July 13, 2017
    Publication date: August 8, 2019
    Applicant: Rockley Photonics Limited
    Inventors: John DRAKE, Damiana LEROSE, Henri NYKÄNEN