Patents by Inventor Henrik Ohlsson

Henrik Ohlsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250150352
    Abstract: Provided herein are methods and systems for determining a historical state of a dynamic network. The methods may comprise continuously obtaining data associated with a system from a plurality of different data sources; constructing a full history dynamic network (FHDN) of the system using the data; and providing a state of the system for a historical time instance in response to a query of the FHDN for the historical time instance.
    Type: Application
    Filed: January 9, 2025
    Publication date: May 8, 2025
    Inventors: Henrik Ohlsson, Umashankar Sandilya, Mehdi Maasoumy Haghighi
  • Publication number: 20250141914
    Abstract: The disclosed technology can acquire a first set of data from a first group of data sources including a plurality of network components within an energy delivery network. A first metric indicating a likelihood that a particular network component, from the plurality of network components, is affected by cyber vulnerabilities can be generated based on the first set of data. A second set of data can be acquired from a second group of data sources including a collection of services associated with the energy delivery network. A second metric indicating a calculated impact on at least a portion of the energy delivery network when the cyber vulnerabilities affect the particular network component can be generated based on the second set of data. A third metric indicating an overall level of cybersecurity risk associated with the particular network component can be generated based on the first metric and the second metric.
    Type: Application
    Filed: December 31, 2024
    Publication date: May 1, 2025
    Inventors: Kuenley Chiu, Jeremy Kolter, Nikhil Krishnan, Henrik Ohlsson
  • Publication number: 20250078178
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to identify a set of features associated with at least one of a collection of residences or an energy billing period. Measured energy consumption information and a plurality of feature values can be acquired for each residence in the collection of residences. Each feature value in the plurality of feature values can correspond to a respective feature in the set of features. A regression model can be trained based on the measured energy consumption information and the plurality of features values for each residence in the collection of residences. At least one expected consumption value and at least one efficient consumption value can be determined based on the regression model.
    Type: Application
    Filed: November 19, 2024
    Publication date: March 6, 2025
    Inventors: Mehdi Maasoumy Haghighi, Jeremy Kolter, Henrik Ohlsson
  • Publication number: 20250068158
    Abstract: The present disclosure provides system, methods, and computer program products for predicting and detecting anomalies in a subsystem of a system. An example method may comprise (a) determining a first plurality of tags that are indicative of an operational performance of the subsystem. The tags can be obtained from (i) a plurality of sensors in the subsystem and (ii) a plurality of sensors in the system that are not in the subsystem. The method may further comprise (b) processing measured values of the first plurality of tags using an autoencoder trained on historical values of the first plurality of tags to generate estimated values of the first plurality of tags; (c) determining whether a difference between the measured values and estimated values meets a threshold; and (d) transmitting an alert that indicates that the subsystem is predicted to experience an anomaly if the difference meets the threshold.
    Type: Application
    Filed: November 11, 2024
    Publication date: February 27, 2025
    Inventors: Lila Fridley, Henrik Ohlsson, Sina Koshfetrat Pakazad
  • Patent number: 12231298
    Abstract: Provided herein are methods and systems for determining a historical state of a dynamic network. The methods may comprise continuously obtaining data associated with a system from a plurality of different data sources; constructing a full history dynamic network (FHDN) of the system using the data; and providing a state of the system for a historical time instance in response to a query of the FHDN for the historical time instance.
    Type: Grant
    Filed: June 28, 2023
    Date of Patent: February 18, 2025
    Assignee: C3.ai, Inc.
    Inventors: Henrik Ohlsson, Umashankar Sandilya, Mehdi Maasoumy Haghighi
  • Patent number: 12218966
    Abstract: The disclosed technology can acquire a first set of data from a first group of data sources including a plurality of network components within an energy delivery network. A first metric indicating a likelihood that a particular network component, from the plurality of network components, is affected by cyber vulnerabilities can be generated based on the first set of data. A second set of data can be acquired from a second group of data sources including a collection of services associated with the energy delivery network. A second metric indicating a calculated impact on at least a portion of the energy delivery network when the cyber vulnerabilities affect the particular network component can be generated based on the second set of data. A third metric indicating an overall level of cybersecurity risk associated with the particular network component can be generated based on the first metric and the second metric.
    Type: Grant
    Filed: July 5, 2022
    Date of Patent: February 4, 2025
    Assignee: C3.ai, Inc.
    Inventors: Kuenley Chiu, Jeremy Kolter, Nikhil Krishnan, Henrik Ohlsson
  • Patent number: 12181866
    Abstract: The present disclosure provides system, methods, and computer program products for predicting and detecting anomalies in a subsystem of a system. An example method may comprise (a) determining a first plurality of tags that are indicative of an operational performance of the subsystem. The tags can be obtained from (i) a plurality of sensors in the subsystem and (ii) a plurality of sensors in the system that are not in the subsystem. The method may further comprise (b) processing measured values of the first plurality of tags using an autoencoder trained on historical values of the first plurality of tags to generate estimated values of the first plurality of tags; (c) determining whether a difference between the measured values and estimated values meets a threshold; and (d) transmitting an alert that indicates that the subsystem is predicted to experience an anomaly if the difference meets the threshold.
    Type: Grant
    Filed: March 7, 2022
    Date of Patent: December 31, 2024
    Assignee: C3.ai, Inc.
    Inventors: Lila Fridley, Henrik Ohlsson, Sina Khoshfetrat Pakazad
  • Publication number: 20240426212
    Abstract: A method of waterflood management for reservoir(s) having production hydrocarbon-containing well(s) including injector well(s). A reservoir model has model parameters in a mathematical relationship relating a water injection rate to a total production rate of the production well including at least one of a hydrocarbon production rate and water production rate. A solver implements automatic differentiation utilizing training data regarding the reservoir including operational data that includes recent sensor and/or historical data for the water injection rate and the hydrocarbon production rate, and constraints for the model parameters. The solver solves the reservoir model to identify values or value distributions for the model parameters to provide a trained reservoir model. The trained reservoir model uses water injection schedule(s) for the injector well to generate predictions for the total production rate.
    Type: Application
    Filed: August 30, 2024
    Publication date: December 26, 2024
    Inventors: Amir Hossein Delgoshaie, Mehdi Maasoumy Haghighi, Riyad Sabir Muradov, Sina Khoshfetratpakazad, Henrik Ohlsson, Philippe Ivan S. Wellens
  • Patent number: 12148053
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to identify a set of features associated with at least one of a collection of residences or an energy billing period. Measured energy consumption information and a plurality of feature values can be acquired for each residence in the collection of residences. Each feature value in the plurality of feature values can correspond to a respective feature in the set of features. A regression model can be trained based on the measured energy consumption information and the plurality of features values for each residence in the collection of residences. At least one expected consumption value and at least one efficient consumption value can be determined based on the regression model.
    Type: Grant
    Filed: April 22, 2021
    Date of Patent: November 19, 2024
    Assignee: C3.ai, Inc.
    Inventors: Mehdi Maasoumy Haghighi, Jeremy Kolter, Henrik Ohlsson
  • Patent number: 12078061
    Abstract: A method of waterflood management for reservoir(s) having production hydrocarbon-containing well(s) including injector well(s). A reservoir model has model parameters in a mathematical relationship relating a water injection rate to a total production rate of the production well including at least one of a hydrocarbon production rate and water production rate. A solver implements automatic differentiation utilizing training data regarding the reservoir including operational data that includes recent sensor and/or historical data for the water injection rate and the hydrocarbon production rate, and constraints for the model parameters. The solver solves the reservoir model to identify values or value distributions for the model parameters to provide a trained reservoir model. The trained reservoir model uses water injection schedule(s) for the injector well to generate predictions for the total production rate.
    Type: Grant
    Filed: July 21, 2021
    Date of Patent: September 3, 2024
    Assignee: C3.ai, Inc.
    Inventors: Amir Hossein Delgoshaie, Mehdi Maasoumy Haghighi, Riyad Sabir Muradov, Sina Khoshfetratpakazad, Henrik Ohlsson, Philippe Ivan S. Wellens
  • Publication number: 20240045659
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating to a plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Application
    Filed: October 23, 2023
    Publication date: February 8, 2024
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Jeremy Kolter
  • Patent number: 11886843
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating toa plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Grant
    Filed: August 1, 2022
    Date of Patent: January 30, 2024
    Assignee: C3.ai, Inc.
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Jeremy Kolter
  • Publication number: 20240022483
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to detect and ascribe network interruptions to specific components or nodes within the network. In an aspect, the present disclosure provides a computer-implemented method comprising: mapping a network comprising a plurality of islands that are capable of dynamically changing by splitting and/or merging of one or more islands, wherein the plurality of islands comprises a plurality of individual components; and detecting and localizing one or more local events at an individual component level as well as at an island level using a disaggregation model.
    Type: Application
    Filed: September 22, 2023
    Publication date: January 18, 2024
    Inventors: Jeremy Kolter, Giuseppe Barbaro`, Mehdi Maasoumy Haghighi, Henrik Ohlsson, Umashankar Sandilya
  • Publication number: 20230351323
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately manage and predict inventory variables with future uncertainty. In an aspect, the present disclosure provides a system that can receive an inventory dataset comprising a plurality of inventory variables that indicate at least historical (i) inventory levels, (ii) inventory holding costs, (iii) supplier orders, and/or (iv) lead times over time. The plurality of inventory variables can be characterized by having one or more future uncertainty levels. The system can process the inventory dataset using a trained machine learning model to generate a prediction of the plurality inventory variables. The system can provide the processed in inventory dataset to an optimization algorithm. The optimization algorithm can be used to predict a target inventory level for optimizing an inventory holding cost. The optimization algorithm can comprise one or more constraint conditions.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 2, 2023
    Inventors: Henrik Ohlsson, Gowtham Bellala, Sina Khoshfetrat Pakazad, Dibyajyoti Banerjee, Nikhil Krishnan
  • Publication number: 20230344724
    Abstract: Provided herein are methods and systems for determining a historical state of a dynamic network. The methods may comprise continuously obtaining data associated with a system from a plurality of different data sources; constructing a full history dynamic network (FHDN) of the system using the data; and providing a state of the system for a historical time instance in response to a query of the FHDN for the historical time instance.
    Type: Application
    Filed: June 28, 2023
    Publication date: October 26, 2023
    Inventors: Henrik Ohlsson, Umashankar Sandilya, Mehdi Maasoumy Haghighi
  • Patent number: 11784892
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to detect and ascribe network interruptions to specific components or nodes within the network. In an aspect, the present disclosure provides a computer-implemented method comprising: mapping a network comprising a plurality of islands that are capable of dynamically changing by splitting and/or merging of one or more islands, wherein the plurality of islands comprises a plurality of individual components; and detecting and localizing one or more local events at an individual component level as well as at an island level using a disaggregation model.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: October 10, 2023
    Assignee: C3.ai, Inc.
    Inventors: Jeremy Kolter, Giuseppe Barbaro, Mehdi Maasoumy Haghighi, Henrik Ohlsson, Umashankar Sandilya
  • Patent number: 11777813
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to detect and ascribe network interruptions to specific components or nodes within the network. In an aspect, the present disclosure provides a computer-implemented method comprising: mapping a network comprising a plurality of islands that are capable of dynamically changing by splitting and/or merging of one or more islands, wherein the plurality of islands comprises a plurality of individual components; and detecting and localizing one or more local events at an individual component level as well as at an island level using a disaggregation model.
    Type: Grant
    Filed: May 4, 2022
    Date of Patent: October 3, 2023
    Assignee: C3.AI, Inc.
    Inventors: Jeremy Kolter, Giuseppe Barbaro, Mehdi Maasoumy Haghighi, Henrik Ohlsson, Umashankar Sandilya
  • Patent number: 11729066
    Abstract: Provided herein are methods and systems for determining a historical state of a dynamic network. The methods may comprise continuously obtaining data associated with a system from a plurality of different data sources; constructing a full history dynamic network (FHDN) of the system using the data; and providing a state of the system for a historical time instance in response to a query of the FHDN for the historical time instance.
    Type: Grant
    Filed: April 30, 2021
    Date of Patent: August 15, 2023
    Assignee: C3.AI, Inc.
    Inventors: Henrik Ohlsson, Umashankar Sandilya, Mehdi Maasoumy Haghighi
  • Patent number: 11620612
    Abstract: The present disclosure provides systems and methods that may advantageously apply machine learning to accurately manage and predict inventory variables with future uncertainty. In an aspect, the present disclosure provides a system that can receive an inventory dataset comprising a plurality of inventory variables that indicate at least historical (i) inventory levels, (ii) inventory holding costs, (iii) supplier orders, and/or (iv) lead times over time. The plurality of inventory variables can be characterized by having one or more future uncertainty levels. The system can process the inventory dataset using a trained machine learning model to generate a prediction of the plurality inventory variables. The system can provide the processed inventory dataset to an optimization algorithm. The optimization algorithm can be used to predict a target inventory level for optimizing an inventory holding cost. The optimization algorithm can comprise one or more constraint conditions.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: April 4, 2023
    Assignee: C3.AI, Inc.
    Inventors: Henrik Ohlsson, Gowtham Bellala, Sina Khoshfetrat Pakazad, Dibyajyoti Banerjee, Nikhil Krishnan
  • Publication number: 20230027296
    Abstract: Various embodiments of the present disclosure can include systems, methods, and non-transitory computer readable media configured to select a set of signals relating toa plurality of energy usage conditions. Signal values for the set of signals can be determined. Machine learning can be applied to the signal values to identify energy usage conditions associated with non-technical loss.
    Type: Application
    Filed: August 1, 2022
    Publication date: January 26, 2023
    Inventors: Thomas M. Siebel, Edward Y. Abbo, Houman Behzadi, Avid Boustani, Nikhil Krishnan, Kuenley Chiu, Henrik Ohlsson, Louis Poirier, Jeremy Kolter