Patents by Inventor Henry C. Kapteyn

Henry C. Kapteyn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11867626
    Abstract: Apparatus and methods for complex imaging reflectometry and refractometry using at least partially coherent light. Quantitative images yield spatially-dependent, local material information about a sample of interest. These images may provide material properties such as chemical composition, the thickness of chemical layers, dopant concentrations, mixing between layers of a sample, reactions at interfaces, etc. An incident beam of VUV wavelength or shorter is scattered off of a sample and imaged at various angles, wavelengths, and/or polarizations. The power of beam is also measured. This data is used to obtain images of a sample's absolute, spatially varying, complex reflectance or transmittance, which is then used to determine spatially-resolved, depth-dependent sample material properties.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: January 9, 2024
    Assignee: Regents of the Univ of Colorado, a body corporate
    Inventors: Christina Porter, Daniel E. Adams, Michael Tanksalvala, Elisabeth Shanblatt, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 11835842
    Abstract: Apparatus and methods for improved HHG of ultrashort pulse laser beams. A HHG assembly includes a gas distribution block and a waveguide cartridge having a HHG hollow core waveguide. The waveguide cartridge is attached to the gas distribution block and may be removed and replaced, while the gas distribution block remains affixed within the apparatus. The gas distribution block is configured to maintain a pressure profile within the hollow core fiber. The system also includes two operating beam sensors and two actuatable mirrors. The operating beam sensors are fixed with respect to the HHG assembly. The system is aligned before operation by adjusting the actuatable mirrors to optimize a sample beam through the waveguide and recording the position of the beam on the operating beam sensors. In operation, the mirrors are actuated to maintain the same positions of the input beam on the operating beam sensors.
    Type: Grant
    Filed: April 13, 2020
    Date of Patent: December 5, 2023
    Assignee: Regents of the Univ of Colorado, a body corporate
    Inventors: Seth Lucien Cousin, Michael Tanksalvala, Henry C Kapteyn
  • Patent number: 11709132
    Abstract: Apparatus and methods for forming an image of an object which involves focusing partially to fully spatially-coherent radiation onto a sample and collecting the resulting scattered radiation (the “standard data set”) on an array detector. In addition to the standard dataset, an additional measurement or plurality of measurements is made of a relatively-unscattered beam, using the array detector, which comprises the “modulus enforced probe (MEP) dataset”. This MEP dataset serves as an extra constraint, called the MEP constraint, in the phase retrieval algorithm used to reconstruct the image of the object.
    Type: Grant
    Filed: May 18, 2017
    Date of Patent: July 25, 2023
    Assignee: Regents of the University of Colorado, a body corporate
    Inventors: Michael Tanksalvala, Daniel E. Adams, Dennis Gardner, Christina L. Porter, Giulia F. Mancini, Margaret M. Murnane, Henry C. Kapteyn
  • Publication number: 20220187679
    Abstract: Apparatus and methods for improved HHG of ultrashort pulse laser beams. A HHG assembly includes a gas distribution block and a waveguide cartridge having a HHG hollow core waveguide. The waveguide cartridge is attached to the gas distribution block and may be removed and replaced, while the gas distribution block remains affixed within the apparatus. The gas distribution block is configured to maintain a pressure profile within the hollow core fiber. The system also includes two operating beam sensors and two actuatable mirrors. The operating beam sensors are fixed with respect to the HHG assembly. The system is aligned before operation by adjusting the actuatable mirrors to optimize a sample beam through the waveguide and recording the position of the beam on the operating beam sensors. In operation, the mirrors are actuated to maintain the same positions of the input beam on the operating beam sensors.
    Type: Application
    Filed: April 13, 2020
    Publication date: June 16, 2022
    Inventors: Seth Lucien Cousin, Michael Tanksalvala, Henry C. Kapteyn
  • Publication number: 20220100094
    Abstract: Apparatus and methods for coherent diffraction imaging This is accomplished by acquiring data in a CDI setup with a CMOS or similar detector. The object is illuminated with coherent light such as EUV light which may be pulsed. This generates diffraction patterns which are collected by the detector, either in frames or continuously (by recording the scan position during collection). Pixels in the CDI data are thresholded and set to zero photons if the pixel is below the threshold level. Pixels above the threshold may be set to a value indicating one photon, or multiple thresholds may be used to set pixels values to one photon, two photons, etc. In addition, multiple threshold values may be used to detect different photon energies for illumination at multiple wavelengths.
    Type: Application
    Filed: January 17, 2020
    Publication date: March 31, 2022
    Inventors: Henry C. Kapteyn, Bin Wang, Chen-Ting Liao, Margaret Murnane
  • Patent number: 11209717
    Abstract: Apparatus and methods for generating controllable, narrow-band radiation at short wavelengths, driven by two colors injected into a structured waveguide. The use of multicolor excitation with the structured waveguide allows the use of very small guided beam diameters, without damaging the waveguide. Reduced guided wave mode area combined with low intensities required to drive wave-mixing frequency conversion allow the use of very compact, high average power, moderate peak intensity femtosecond fiber laser technology to drive useful conversion efficiency of laser light into the deep-UV and vacuum-UV at MHz repetition rates.
    Type: Grant
    Filed: December 14, 2018
    Date of Patent: December 28, 2021
    Assignee: Kapteyn-Murnane Laboratories, Inc.
    Inventors: Sterling J. Backus, Henry C. Kapteyn, David G. Winters
  • Publication number: 20210325301
    Abstract: Apparatus and methods for complex imaging reflectometry and refractometry using at least partially coherent light. Quantitative images yield spatially-dependent, local material information about a sample of interest. These images may provide material properties such as chemical composition, the thickness of chemical layers, dopant concentrations, mixing between layers of a sample, reactions at interfaces, etc. An incident beam of VUV wavelength or shorter is scattered off of a sample and imaged at various angles, wavelengths, and/or polarizations. The power of beam is also measured. This data is used to obtain images of a sample's absolute, spatially varying, complex reflectance or transmittance, which is then used to determine spatially-resolved, depth-dependent sample material properties.
    Type: Application
    Filed: April 12, 2021
    Publication date: October 21, 2021
    Inventors: Christina Porter, Daniel E. Adams, Michael Tanksalvala, Elisabeth Shanblatt, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 11150139
    Abstract: Apparatus and methods of full spatio-temporal characterization of ultrashort pulses from an input pulse-beam source. An interferometer system generates a first, second, third, and fourth replica of the input pulse-beam such that the second replica has a varying delay with respect to the first replica and the fourth replica has a varying delay with respect to the third replica. A reference plane is imaged onto a nonlinear spectral measurement device based upon the first and second replicas, and the reference plane is also imaged onto a wavefront sensitive (WFS) imaging element based on the third and fourth replicas. The signals from the WFS imaging element and the spectral signal are used to compute a pulse temporal spectral profile of the input pulse-beam.
    Type: Grant
    Filed: March 16, 2020
    Date of Patent: October 19, 2021
    Assignee: Kapteyn Murnane Laboratories, Inc.
    Inventors: Henry C. Kapteyn, Daniel E. Adams, Seth L. Cousin
  • Patent number: 10985523
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 20, 2021
    Assignee: The Regents of the University of Colorado
    Inventors: Tenio V Popmintchev, Dimitar V Popmintchev, Margaret M Murnane, Henry C Kapteyn
  • Publication number: 20210018816
    Abstract: Apparatus and methods for generating controllable, narrow-band radiation at short wavelengths, driven by two colors injected into a structured waveguide. The use of multicolor excitation with the structured waveguide allows the use of very small guided beam diameters, without damaging the waveguide. Reduced guided wave mode area combined with low intensities required to drive wave-mixing frequency conversion allow the use of very compact, high average power, moderate peak intensity femtosecond fiber laser technology to drive useful conversion efficiency of laser light into the deep-UV and vacuum-UV at MHz repetition rates.
    Type: Application
    Filed: December 14, 2018
    Publication date: January 21, 2021
    Inventors: Sterling J. Backus, Henry C. Kapteyn, David G. Winters
  • Publication number: 20200292393
    Abstract: Apparatus and methods of full spatio-temporal characterization of ultrashort pulses from an input pulse-beam source. An interferometer system generates a first, second, third, and fourth replica of the input pulse-beam such that the second replica has a varying delay with respect to the first replica and the fourth replica has a varying delay with respect to the third replica. A reference plane is imaged onto a nonlinear spectral measurement device based upon the first and second replicas, and the reference plane is also imaged onto a wavefront sensitive (WFS) imaging element based on the third and fourth replicas. The signals from the WFS imaging element and the spectral signal are used to compute a pulse temporal spectral profile of the input pulse-beam.
    Type: Application
    Filed: March 16, 2020
    Publication date: September 17, 2020
    Inventors: Henry C. Kapteyn, Daniel E. Adams, Seth L. Cousin
  • Publication number: 20190372300
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Application
    Filed: November 13, 2018
    Publication date: December 5, 2019
    Inventors: Tenio V. Popmintchev, Dimitar V. Popmintchev, Margaret M. Murnane, Henry C. Kapteyn
  • Publication number: 20190302010
    Abstract: Apparatus and methods for complex imaging reflectometry and refractometry using at least partially coherent light (121). Quantitative images yield spatially-dependent, local material information about a sample (128, 228) of interest. These images may provide material properties such as chemical composition, the thickness of chemical layers, dopant concentrations, mixing between layers of a sample, reactions at interfaces, etc. An incident beam (123) of VUV wavelength or shorter is scattered off of a sample (128, 228) and imaged at various angles, wavelengths, and/or polarizations. The power of beam (123) is also measured. This data is used to obtain images of a sample's absolute, spatially varying, complex reflectance or transmittance, which is then used to determine spatially-resolved, depth-dependent sample material properties.
    Type: Application
    Filed: May 18, 2017
    Publication date: October 3, 2019
    Inventors: Christina Porter, Daniel E. Adams, Michael Tanksalvala, Elizabeth Shanblatt, Margaret M. Murnane, Henry C. Kapteyn
  • Publication number: 20190204218
    Abstract: Apparatus and methods for forming an image of an object which involves focusing partially to fully spatially-coherent radiation onto a sample and collecting the resulting scattered radiation (the “standard data set”) on an array detector. In addition to the standard dataset, an additional measurement or plurality of measurements is made of a relatively-unscattered beam, using the array detector, which comprises the “modulus enforced probe (MEP) dataset”. This MEP dataset serves as an extra constraint, called the MEP constraint, in the phase retrieval algorithm used to reconstruct the image of the object.
    Type: Application
    Filed: May 18, 2017
    Publication date: July 4, 2019
    Inventors: Michael Tankslavala, Daniel E. Adams, Dennis Gardner, Christina L. Porter, Giulia F. Mancini, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 10128631
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Grant
    Filed: April 18, 2017
    Date of Patent: November 13, 2018
    Assignee: The Regents of the University of Colorado, a body
    Inventors: Tenio V Popmintchev, Dimitar V Popmintchev, Margaret M Murnane, Henry C Kapteyn
  • Patent number: 9911207
    Abstract: Apparatus and methods for Coherent Diffractive Imaging with multiple, simultaneous, spatially distinct beams chosen and configured to isolate incoherent sums of beam diffraction such that interference between the multiple beams is not present in the data prior to computationally reconstructing the image. This is accomplished through selecting the multiple beams to be non-interfering modes, or through designing the apparatus such that the interference is not recorded, or through processing the collected data to filter the interference before reconstructing the image.
    Type: Grant
    Filed: September 5, 2016
    Date of Patent: March 6, 2018
    Assignee: KM Labs, Inc.
    Inventors: Robert M. Karl, Daniel E. Adams, Charles S. Bevis, Henry C. Kapteyn, Margaret M. Murnane
  • Patent number: 9891584
    Abstract: Apparatus and methods for coherent diffractive imaging with arbitrary angle of illumination incidence utilize a method of fast remapping of a detected diffraction intensity pattern from a detector pixel array (initial grid) to a uniform spatial frequency grid (final grid) chosen to allow for FFT on the remapped pattern. This is accomplished by remapping the initial grid to an intermediate grid chosen to result in a final grid that is linear in spatial frequency. The initial grid is remapped (generally by interpolation) to the intermediate grid that is calculated to correspond to the final grid. In general, the initial grid (x,y) is uniform in space, the intermediate grid ({tilde over (x)},{tilde over (y)}) is non-uniform in spatial frequency, and the final grid ({tilde over (f)}x,{tilde over (f)}y) is uniform in spatial frequency.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: February 13, 2018
    Assignee: The Regents of the University of Colorado, a body
    Inventors: Bosheng Zhang, Matthew D. Seaberg, Daniel E. Adams, Henry C. Kapteyn, Margaret M. Murnane
  • Publication number: 20170222393
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Application
    Filed: April 18, 2017
    Publication date: August 3, 2017
    Inventors: Tenio V. Popmintchev, Dimitar V. Popmintchev, Margaret M. Murnane, Henry C. Kapteyn
  • Patent number: 9627844
    Abstract: A method for extending and enhancing bright coherent high-order harmonic generation into the VUV-EUV-X-ray regions of the spectrum involves a way of accomplishing phase matching or effective phase matching of extreme upconversion of laser light at high conversion efficiency, approaching 10?3 in some spectral regions, and at significantly higher photon energies in a waveguide geometry, in a self-guiding geometry, a gas cell, or a loosely focusing geometry, containing nonlinear medium. The extension and enhancement of the coherent VUV, EUV, X-ray emission to high photon energies relies on using VUV-UV-VIS lasers of shorter wavelength. This leads to enhancement of macroscopic phase matching parameters due to stronger contribution of linear and nonlinear dispersion of both atoms and ions, combined with a strong microscopic single-atom yield.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: April 18, 2017
    Assignee: The Regents of the University of Colorado, a body
    Inventors: Tenio V Popmintchev, Dimitar V Popmintchev, Margaret M Murnane, Henry C Kapteyn
  • Publication number: 20170069116
    Abstract: Apparatus and methods for Coherent Diffractive Imaging with multiple, simultaneous, spatially distinct beams chosen and configured to isolate incoherent sums of beam diffraction such that interference between the multiple beams is not present in the data prior to computationally reconstructing the image. This is accomplished through selecting the multiple beams to be non-interfering modes, or through designing the apparatus such that the interference is not recorded, or through processing the collected data to filter the interference before reconstructing the image.
    Type: Application
    Filed: September 5, 2016
    Publication date: March 9, 2017
    Inventors: Robert M. Karl, Daniel E. Adams, Charles S. Bevis, Henry C. Kapteyn, Margaret M. Murnane