Patents by Inventor Henry Hung Yang

Henry Hung Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8964515
    Abstract: A system and method of calibrating optical measuring equipment includes optically measuring discrete objects of a first known predictable pattern from a calibration apparatus, wherein the first known predictable pattern is a bit pattern. A recording surface optical reader is calibrated based on the optically measuring. Using the first known predictable pattern, contamination is filtered from the results of the optically measuring.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: February 24, 2015
    Assignee: Seagate Technology LLC
    Inventors: Hamid Ghazvini, David Kuo, Minh Huong Le, Kim Yang Lee, HongYing Wang, Nobuo Kurataka, Yautzong Hsu, Henry Hung Yang
  • Publication number: 20140113064
    Abstract: A system and method of calibrating optical measuring equipment includes optically measuring discrete objects of a first known predictable pattern from a calibration apparatus, wherein the first known predictable pattern is a bit pattern. A recording surface optical reader is calibrated based on the optically measuring. Using the first known predictable pattern, contamination is filtered from the results of the optically measuring.
    Type: Application
    Filed: December 27, 2013
    Publication date: April 24, 2014
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Hamid Ghazvini, David Kuo, Minh Huong Le, Kim Yang Lee, HongYing Wang, Nobuo Kurataka, Yautzong Hsu, Henry Hung Yang
  • Patent number: 8619528
    Abstract: A system and method of calibrating optical measuring equipment includes optically measuring discrete objects of a first known predictable pattern from a calibration apparatus, wherein the first known predictable pattern is a bit pattern. A recording surface optical reader is calibrated based on the optically measuring. Using the first known predictable pattern, contamination is filtered from the results of the optically measuring.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: December 31, 2013
    Assignee: Seagate Technology LLC
    Inventors: Hamid Ghazvini, David Kuo, Minh Huong Le, Kim Yang Lee, HongYing Wang, Nobuo Kurataka, Yautzong Hsu, Henry Hung Yang
  • Patent number: 8474128
    Abstract: A method is provided for forming a plurality of regions of magnetic material in a substrate having a first approximately planar surface. The method comprises the steps of fabricating projections in the first surface of the substrate, depositing onto the first surface a magnetic material in such a way that the tops of the projections are covered with magnetic material, and depositing filler material atop the substrate so produced. The filler material may then be planarized, for example by chemical-mechanical polishing. In an alternative embodiment magnetic material is deposited on a substrate and portions of it are removed, leaving islands of material. Filler material is then deposited, which may be planarized.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 2, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Zvonimir Z. Bandic, Elizabeth Ann Dobisz, Jui-Lung Li, Henry Hung Yang
  • Patent number: 8441758
    Abstract: Methods of defining servo patterns and data patterns for forming patterned magnetic media are described. For one method, a lithographic process is performed to define a servo pattern in servo regions on a substrate. The lithographic process also defines a first data pattern in data regions of the substrate. The first data pattern is then transferred to (i.e., etched into) the data regions. Self-assembly structures are then formed on the data pattern in the data regions to define a second data pattern. The servo pattern is then transferred to the servo regions and the second data pattern is transferred to the data regions. Thus, the servo pattern is defined through lithographic processes while the data pattern is defined by a combination of lithographic processes and self-assembly.
    Type: Grant
    Filed: May 16, 2011
    Date of Patent: May 14, 2013
    Assignee: HGST Netherlands, B.V.
    Inventors: Thomas R. Albrecht, Xiao Z. Wu, Henry Hung Yang
  • Publication number: 20130051206
    Abstract: A system and method of calibrating optical measuring equipment includes optically measuring discrete objects of a first known predictable pattern from a calibration apparatus, wherein the first known predictable pattern is a bit pattern. A recording surface optical reader is calibrated based on the optically measuring. Using the first known predictable pattern, contamination is filtered from the results of the optically measuring.
    Type: Application
    Filed: August 31, 2011
    Publication date: February 28, 2013
    Applicant: SEAGATE TECHNOLOGY, LLC
    Inventors: Hamid Ghazvini, David Kuo, Minh Huong Le, Kim Yang Lee, HongYing Wang, Nobuo Kurataka, Yautzong Hsu, Henry Hung Yang
  • Publication number: 20110258841
    Abstract: A method is provided for forming a plurality of regions of magnetic material in a substrate having a first approximately planar surface. The method comprises the steps of fabricating projections in the first surface of the substrate, depositing onto the first surface a magnetic material in such a way that the tops of the projections are covered with magnetic material, and depositing filler material atop the substrate so produced. The filler material may then be planarized, for example by chemical-mechanical polishing. In an alternative embodiment magnetic material is deposited on a substrate and portions of it are removed, leaving islands of material. Filler material is then deposited, which may be planarized.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 27, 2011
    Inventors: Zvonimir Z. Bandic, Elizabeth Ann Dobisz, Jui-Lung Li, Henry Hung Yang
  • Publication number: 20110215070
    Abstract: Methods of defining servo patterns and data patterns for forming patterned magnetic media are described. For one method, a lithographic process is performed to define a servo pattern in servo regions on a substrate. The lithographic process also defines a first data pattern in data regions of the substrate. The first data pattern is then transferred to (i.e., etched into) the data regions. Self-assembly structures are then formed on the data pattern in the data regions to define a second data pattern. The servo pattern is then transferred to the servo regions and the second data pattern is transferred to the data regions. Thus, the servo pattern is defined through lithographic processes while the data pattern is defined by a combination of lithographic processes and self-assembly.
    Type: Application
    Filed: May 16, 2011
    Publication date: September 8, 2011
    Inventors: Thomas R. Albrecht, Xiao Z. Wu, Henry Hung Yang
  • Patent number: 8003236
    Abstract: A method for making a master mold to be used for nanoimprinting patterned-media magnetic recording disks results in a master mold having topographic pillars arranged in a pattern of annular bands of concentric rings. The ratio of circumferential density of the pillars to the radial density of the concentric rings in a band is greater than 1. The method uses sidewall lithography to first form a pattern of generally radially-directed pairs of parallel lines on the master mold substrate, with the lines being grouped into annular zones or bands. The sidewall lithography process can be repeated, resulting in a doubling of the number of lines each time the process is repeated. Conventional lithography is used to form concentric rings over the radially-directed pairs of parallel lines. After etching and resist removal, the master mold has pillars arranged in circular rings, with the rings grouped into annular bands.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: August 23, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas R. Albrecht, Barry Cushing Stipe, Henry Hung Yang
  • Patent number: 7969686
    Abstract: Methods of defining servo patterns and data patterns for forming patterned magnetic media are described. For one method, a lithographic process is performed to define a servo pattern in servo regions on a substrate. The lithographic process also defines a first data pattern in data regions of the substrate. The first data pattern is then transferred to (i.e., etched into) the data regions. Self-assembly structures are then formed on the data pattern in the data regions to define a second data pattern. The servo pattern is then transferred to the servo regions and the second data pattern is transferred to the data regions. Thus, the servo pattern is defined through lithographic processes while the data pattern is defined by a combination of lithographic processes and self-assembly.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: June 28, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Thomas R. Albrecht, Xiao Z. Wu, Henry Hung Yang
  • Publication number: 20110132867
    Abstract: A method and apparatus of imprint lithography wherein the method includes depositing a material on a patterned surface of a conductive substrate, and pressing a transparent substrate and the conductive substrate together, wherein the pressing causes the material to conform to the patterned surface. Energy is applied to the material to form patterned material from the material. The transparent substrate and the conductive substrate are separated, wherein the patterned material adheres to the transparent substrate.
    Type: Application
    Filed: October 29, 2010
    Publication date: June 9, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Henry Hung Yang, Kim Yang Lee, Yautzong Hsu, Shuaigang Xiao, Xiaomin Yang, HongYing Wang, Zhaoning Yu
  • Patent number: 7941911
    Abstract: A method is provided for forming a plurality of regions of magnetic material in a substrate having a first approximately planar surface. The method comprises the steps of fabricating projections in the first surface of the substrate, depositing onto the first surface a magnetic material in such a way that the tops of the projections are covered with magnetic material, and depositing filler material atop the substrate so produced. The filler material may then be planarized, for example by chemical-mechanical polishing. In an alternative embodiment magnetic material is deposited on a substrate and portions of it are removed, leaving islands of material. Filler material is then deposited, which may be planarized.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: May 17, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Zvonimir Z. Bandic, Elizabeth Ann Dobisz, Jui-Lung Li, Henry Hung Yang
  • Publication number: 20100147797
    Abstract: A system and method for patterning a master disk or “stamper” to be used for nanoimprinting magnetic recording disks uses an air-bearing slider that supports an aperture structure within the optical near-field of a resist layer on a rotating master disk substrate. Laser pulses directed to the input side of the aperture are output to the resist layer. The aperture structure includes a metal film reflective to the laser radiation with the aperture formed in it. The aperture has a size less than the wavelength of the incident laser radiation and is maintained by the air-bearing slider near the resist layer to within the radiation wavelength. The timing of the laser pulses is controlled to form a pattern of exposed regions in the resist layer, with this pattern ultimately resulting in the desired pattern of data islands and nondata islands in the magnetic recording disks when they are nanoimprinted by the master disk.
    Type: Application
    Filed: February 24, 2010
    Publication date: June 17, 2010
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Thomas R. Albrecht, Dennis R. McKean, Gurinder Pal Singh, Henry Hung Yang
  • Patent number: 7732071
    Abstract: A patterned perpendicular magnetic recording medium of the type that has spaced-apart pillars with magnetic material on their ends and with nonmagnetic trenches between the pillars is made with a method that allows use of a pre-etched substrate. The substrate has a generally planar surface at the trenches and comprises material that when heated will diffuse into the magnetic recording layer material and chemically react with one or more of the elements typically used in the recording layer. The pillars are formed of material that will not diffuse into the recording layer. After the recording layer is formed over the entire substrate so as to cover both the pillar ends and the trenches, the substrate is annealed. This results in the destruction or at least substantial reduction of any ferromagnetism in the recording layer material in the trenches so that the trenches are nonmagnetic.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: June 8, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Eric Edward Fullerton, Olav Hellwig, Jeffrey S. Lille, James Terrence Olson, Petrus Antonius VanDerHeijden, Henry Hung Yang
  • Patent number: 7729085
    Abstract: The media heating device of the magnetic head includes an optical resonant cavity produces a high intensity near-field optical beam of subwavelength dimension adjacent to the write pole. A suitable resonant cavity may be a spherical cavity, disk shaped cavity, ring shaped cavity, racetrack shaped cavity, micropillar cavity, photonic crystal cavity and Fabry-Perot cavity. The cavity is fabricated as a planar thin film structure in layers that are generally parallel to the magnetic pole thin film layers of the magnetic head, such that the principal axis of the resonant cavity is parallel to the air bearing surface (ABS). Optical energy is coupled into the resonant cavity through a waveguide that is placed proximate the cavity, and optical energy is coupled out of the cavity through an aperture that is placed within the cavity. A preferred embodiment may include a nano-aperture disposed between the resonant cavity and the ABS.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: June 1, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Xuhui Jin, Chie Ching Poon, Timothy Carl Strand, Henry Hung Yang
  • Patent number: 7649677
    Abstract: A subwavelength aperture includes a plurality of ridges that project from an aperture sidewall into the aperture opening. The ridges may be closely spaced such that the hot spots associated with the ridges are likewise closely spaced and create an elongated hot spot. The subwavelength aperture of the present invention may be adapted for use in a magnetic head of a hard disk drive for improved thermally assisted recording (TAR) of magnetic data bits. Such a magnetic head may include an optical resonant cavity that is fabricated within the magnetic head structure.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: January 19, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Xuhui Jin, Chie Ching Poon, Timothy Carl Strand, Henry Hung Yang
  • Patent number: 7648641
    Abstract: A method of the present invention is presented for deep etching of features on a surface. In one embodiment, the method includes providing a substrate having a surface selected to undergo a feature etching process and coating the substrate surface with a protective layer and an imprintable layer. The coated substrate is then subjected to a feature imprinting and etching process. Subsequent to the feature etching process, exposed portions of the protective layer are removed, exposing a well-defined, topographically patterned substrate. In addition, an apparatus for undergoing a feature etching process is disclosed. The apparatus comprises a substrate, an imprintable layer selected to undergo an imprinting process, and a protective layer positioned between the substrate and the imprintable layer.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: January 19, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Robert Albrecht, Henry Hung Yang
  • Publication number: 20090310256
    Abstract: A method for making a master mold to be used for nanoimprinting patterned-media magnetic recording disks results in a master mold having topographic pillars arranged in a pattern of annular bands of concentric rings. The ratio of circumferential density of the pillars to the radial density of the concentric rings in a band is greater than 1. The method uses sidewall lithography to first form a pattern of generally radially-directed pairs of parallel lines on the master mold substrate, with the lines being grouped into annular zones or bands. The sidewall lithography process can be repeated, resulting in a doubling of the number of lines each time the process is repeated. Conventional lithography is used to form concentric rings over the radially-directed pairs of parallel lines. After etching and resist removal, the master mold has pillars arranged in circular rings, with the rings grouped into annular bands.
    Type: Application
    Filed: June 17, 2008
    Publication date: December 17, 2009
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Thomas R. Albrecht, Barry Cushing Stipe, Henry Hung Yang
  • Publication number: 20090166321
    Abstract: Methods of defining servo patterns and data patterns for forming patterned magnetic media are described. For one method, a lithographic process is performed to define a servo pattern in servo regions on a substrate. The lithographic process also defines a first data pattern in data regions of the substrate. The first data pattern is then transferred to (i.e., etched into) the data regions. Self-assembly structures are then formed on the data pattern in the data regions to define a second data pattern. The servo pattern is then transferred to the servo regions and the second data pattern is transferred to the data regions. Thus, the servo pattern is defined through lithographic processes while the data pattern is defined by a combination of lithographic processes and self-assembly.
    Type: Application
    Filed: December 26, 2007
    Publication date: July 2, 2009
    Inventors: Thomas R. Albrecht, Xiao Z. Wu, Henry Hung Yang
  • Patent number: 7553426
    Abstract: An apparatus, system, and method are disclosed for increasing data storage density in patterned media. One or more deposition sources may apply magnetic material to one or more recesses formed in a substrate, each recess having opposing sidewalls that are effectively coated by the deposition sources. The top surface of the substrate may subsequently be planarized to remove magnetic material from such surface, thereby isolating one or more recordable magnetic regions formed on each sidewall. In this manner, the present invention may provide at least two recordable regions for every recess formed in a substrate.
    Type: Grant
    Filed: March 1, 2005
    Date of Patent: June 30, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Thomas Robert Albrecht, Henry Hung Yang