Patents by Inventor Henry J. Wieck

Henry J. Wieck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10168322
    Abstract: An electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a display. The display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The system includes lights which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the display otherwise, No? is displayed on the display.
    Type: Grant
    Filed: May 12, 2014
    Date of Patent: January 1, 2019
    Assignee: Church & Dwight Co., Inc.
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Publication number: 20140248717
    Abstract: An electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a display. The display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The system includes lights which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the display otherwise, No? is displayed on the display.
    Type: Application
    Filed: May 12, 2014
    Publication date: September 4, 2014
    Applicant: CHURCH & DWIGHT CO., INC.
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Patent number: 8722395
    Abstract: The invention is an electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a LCD display. The LCD display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The electronic processing system includes red and green LEDs which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the LCD. If not, No? is displayed on the LCD.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 13, 2014
    Assignee: Church & Dwight Co., Inc.
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Patent number: 8623635
    Abstract: The invention is an electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a LCD display. The LCD display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The electronic processing system includes red and green LEDs which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the LCD. If not, No? is displayed on the LCD.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: January 7, 2014
    Assignee: Church & Dwight Co., Inc.
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Publication number: 20100240149
    Abstract: The invention is an electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a LCD display. The LCD display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The electronic processing system includes red and green LEDs which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the LCD. If not, No? is displayed on the LCD.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 23, 2010
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Publication number: 20100239460
    Abstract: The invention is an electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a LCD display. The LCD display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The electronic processing system includes red and green LEDs which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the LCD. If not, No? is displayed on the LCD.
    Type: Application
    Filed: June 3, 2010
    Publication date: September 23, 2010
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Patent number: 7763454
    Abstract: The invention is an electronically processed single-step test device for detecting the presence of a preselected analyte in a fluid. The device includes a hollow rectangular outer casing, disposed within co-joined upper and lower sections of the casing are assay material, an electronic processing system, and a LCD display. The LCD display is observable through a viewing window. The assay material is a sorptive material including a fluid sample application region in the form of a sample wick in fluid communication with a test strip. The test strip includes an analyte capture region adjacent to a light shield. The electronic processing system includes red and green LEDs which are alternately pulsed or energized over predetermined periods of time to determine if fluid test results show a marker or markers in the capture region indicative of the presence of a preselected analyte in the fluid. If so, Yes+ is displayed on the LCD. If not, No? is displayed on the LCD.
    Type: Grant
    Filed: July 9, 2004
    Date of Patent: July 27, 2010
    Assignee: Church & Dwight Co., Inc.
    Inventors: Albert R. Nazareth, Francis T. Delahanty, Gregory M. Bandru, Henry J. Wieck, Stephen R. Synakowski
  • Patent number: 7229839
    Abstract: A test strip adapted to receive a sample and detect an analyte therein is provided. The test strip comprises a sample addition zone to which a sample may be added; an absorbent zone proximal to the sample addition zone; one or more test zones distal to the sample addition zone, at least one of the test zones including a first analyte binding agent immobilized therein which is capable of binding to the analyte to be detected; and a terminal sample flow zone distal to the one or more test zones, the absorbent zone being positioned relative to the sample addition zone and having an absorption capacity relative to the other zones of the test strip such that a distal diffusion front of a sample added to the sample addition zone diffuses from the sample addition zone to a distal diffusion point within the terminal sample flow zone and then reverses direction and diffuses proximal relative to the one or more test zones.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: June 12, 2007
    Assignee: Relia Diagnostic Systems, LLC
    Inventors: Richard M. Thayer, Alan J. Polito, Robert K. Dinello, George H. Sierra, Henry J. Wieck
  • Patent number: 7074610
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: August 30, 2001
    Date of Patent: July 11, 2006
    Assignee: i-Stat Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Jeanne A. Itak, Imants R. Lauks, Randall M. Mier, Sylvia Piznik, Nicolaas Smit, Susan J. Steiner, Paul Van Der Werf, Henry J. Wieck
  • Publication number: 20030157729
    Abstract: A test strip adapted to receive a sample and detect an analyte therein is provided. The test strip comprises a sample addition zone to which a sample may be added; an absorbent zone proximal to the sample addition zone; one or more test zones distal to the sample addition zone, at least one of the test zones including a first analyte binding agent immobilized therein which is capable of binding to the analyte to be detected; and a terminal sample flow zone distal to the one or more test zones, the absorbent zone being positioned relative to the sample addition zone and having an absorption capacity relative to the other zones of the test strip such that a distal diffusion front of a sample added to the sample addition zone diffuses from the sample addition zone to a distal diffusion point within the terminal sample flow zone and then reverses direction and diffuses proximal relative to the one or more test zones.
    Type: Application
    Filed: January 17, 2003
    Publication date: August 21, 2003
    Inventors: Richard M. Thayer, Alan J. Polito, Robert K. Dinello, George H. Sierra, Henry J. Wieck
  • Patent number: 6528323
    Abstract: A test strip adapted to receive a sample and detect an analyte therein is provided. The test strip comprises a sample addition zone to which a sample may be added; an absorbent zone proximal to the sample addition zone; one or more test zones distal to the sample addition zone, at least one of the test zones including a first analyte binding agent immobilized therein which is capable of binding to the analyte to be detected; and a terminal sample flow zone distal to the one or more test zones, the absorbent zone being positioned relative to the sample addition zone and having an absorption capacity relative to the other zones of the test strip such that a distal diffusion front of a sample added to the sample addition zone diffuses from the sample addition zone to a distal diffusion point within the terminal sample flow zone and then reverses direction and diffuses proximal relative to the one or more test zones.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: March 4, 2003
    Assignee: Praxsys Biosystems, Inc.
    Inventors: Richard M. Thayer, Alan J. Polito, Robert K. Dinello, George H. Sierra, Henry J. Wieck
  • Publication number: 20020090738
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Application
    Filed: August 30, 2001
    Publication date: July 11, 2002
    Applicant: i-STAT Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Imants R. Lauks, Randall M. Mier, Sylvia Piznik, Nicolaas Smit, Paul Van Der Werf, Henry J. Wieck
  • Patent number: 6306594
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: October 23, 2001
    Assignee: i-STAT Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Imants R. Lauks, Randall M. Mier, Sylvia Piznik, Nicolaas Smit, Paul Van der Werf, Henry J. Wieck
  • Patent number: 6097831
    Abstract: Methods and systems for verifying the volume of a reagent dispensed into an affinity assay vessel are described. In one embodiment, a method is for verifying the volume of a reagent dispensed into an affinity assay vessel described in which a fluid sample is deposited into a vessel that includes a reaction chamber and a volume determination reference point. The reaction chamber further includes a test strip. According to one embodiment, the dispensed fluid is agitated to promote contact between the fluid and a test strip disposed within the reaction chamber. The relative positions of the volume determination reference point and an edge of the meniscus of the dispensed fluid are then determined such that the meniscus of the dispensed fluid is not penetrated. The volume of the dispensed fluid is determined from these relative positions.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: August 1, 2000
    Assignee: Chiron Corporation
    Inventors: Henry J. Wieck, Paul C. Dahlstrom, Dennis W. Nixon
  • Patent number: 5837446
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over he dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 17, 1998
    Assignee: i-STAT Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Jeanne Itak, Imants R. Lauks, Sylvia Piznik, Nicolaas Smit, Susan Steiner, Paul Van Der Werf, Henry J. Wieck, Randall M. Mier, deceased
  • Patent number: 5837454
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: November 17, 1998
    Assignee: i-STAT Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Imants R. Lauks, Randall M. Mier, deceased, Sylvia Piznik, Nicolaas Smit, Paul Van Der Werf, Henry J. Wieck, Susan Steiner, Jeanne Itak
  • Patent number: 5554339
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: August 19, 1993
    Date of Patent: September 10, 1996
    Assignee: i-Stat Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Imants R. Lauks, Randall M. Mier, Sylvia Piznik, Nicolaas Smit, Paul Van Der Werf, Henry J. Wieck
  • Patent number: 5466575
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: September 10, 1992
    Date of Patent: November 14, 1995
    Assignee: i-Stat Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Imants R. Lauks, Randall M. Mier, Sylvia Piznik, Nicolaas Smit, Paul Van Der Werf, Henry J. Wieck
  • Patent number: 5200051
    Abstract: An efficient method for the microfabrication of electronic devices which have been adapted for the analyses of biologically significant analyte species is described. The techniques of the present invention allow for close control over the dimensional features of the various components and layers established on a suitable substrate. Such control extends to those parts of the devices which incorporate the biological components which enable these devices to function as biological sensors. The materials and methods disclosed herein thus provide an effective means for the mass production of uniform wholly microfabricated biosensors. Various embodiments of the devices themselves are described herein which are especially suited for real time analyses of biological samples in a clinical setting. In particular, the present invention describes assays which can be performed using certain ligand/ligand receptor-based biosensor embodiments.
    Type: Grant
    Filed: November 7, 1989
    Date of Patent: April 6, 1993
    Assignee: I-Stat Corporation
    Inventors: Stephen N. Cozzette, Graham Davis, Jeanne A. Itak, Imants R. Lauks, Randall M. Mier, Sylvia Piznik, Nicolaas Smit, Susan J. Steiner, Paul Van Der Werf, Henry J. Wieck
  • Patent number: D337164
    Type: Grant
    Filed: July 19, 1990
    Date of Patent: July 6, 1993
    Assignee: I-STAT Corporation
    Inventors: Imants R. Lauks, Joseph W. Rogers, John Svezia, Henry J. Wieck, Michael Zelin, Philip Blyskal