Patents by Inventor Henry O. Marcy

Henry O. Marcy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230085072
    Abstract: A method includes operating equipment to affect a variable state or condition of a space and training weights of a neural network by outputting control dispatches from the neural network based on simulated inputs, simulating costs associated with operating the equipment in accordance with control dispatches, and adjusting the weights to reduce the costs. The method also includes generating a control dispatch for the equipment by applying an actual measurement relating to the space as an input to the neural network, and controlling the equipment in accordance with the control dispatch.
    Type: Application
    Filed: November 21, 2022
    Publication date: March 16, 2023
    Inventors: Robert D. Turney, Henry O. Marcy, V
  • Patent number: 11507033
    Abstract: A method includes operating equipment to affect a variable state or condition of a space and determining a set of learned weights for a neural network by modeling an estimated cost of operating the equipment over a plurality of simulated scenarios. Each simulated scenario includes simulated measurements relating to the space. The neural network is configured to generate simulated control dispatches for the equipment based on the simulated measurements. The method also includes configuring the neural network for online control by applying the set of learned weights, applying actual measurements relating to the space to the neural network to generate a control dispatch for the equipment, and controlling the equipment in accordance with the control dispatch.
    Type: Grant
    Filed: May 16, 2019
    Date of Patent: November 22, 2022
    Assignee: Johnson Controls Tyco IP Holdings LLP
    Inventors: Robert D. Turney, Henry O. Marcy, V
  • Patent number: 11002457
    Abstract: A building cooling system includes a controller and a cooling device operable to affect indoor air temperature of a building. The controller is configured to obtain a cost function that characterizes a cost of operating the cooling device over a future time period, obtain a dataset relating to the building, determine a current state of the building by applying the dataset to a neural network, select a temperature bound associated with the current state, augment the cost function to include a penalty term that increases the cost when the indoor air temperature violates the temperature bound, and determine a temperature setpoint for each of a plurality of time steps in the future time period. The temperature setpoints achieve a target value of the cost function over the future time period. The controller is configured to control the cooling device to drive the indoor air temperature towards the temperature setpoint.
    Type: Grant
    Filed: May 6, 2019
    Date of Patent: May 11, 2021
    Assignee: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Henry O. Marcy, V, Zhizhong Pang
  • Publication number: 20190354071
    Abstract: A method includes operating equipment to affect a variable state or condition of a space and determining a set of learned weights for a neural network by modeling an estimated cost of operating the equipment over a plurality of simulated scenarios. Each simulated scenario includes simulated measurements relating to the space. The neural network is configured to generate simulated control dispatches for the equipment based on the simulated measurements. The method also includes configuring the neural network for online control by applying the set of learned weights, applying actual measurements relating to the space to the neural network to generate a control dispatch for the equipment, and controlling the equipment in accordance with the control dispatch.
    Type: Application
    Filed: May 16, 2019
    Publication date: November 21, 2019
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Henry O. Marcy, V
  • Publication number: 20190338973
    Abstract: A building cooling system includes a controller and a cooling device operable to affect indoor air temperature of a building. The controller is configured to obtain a cost function that characterizes a cost of operating the cooling device over a future time period, obtain a dataset relating to the building, determine a current state of the building by applying the dataset to a neural network, select a temperature bound associated with the current state, augment the cost function to include a penalty term that increases the cost when the indoor air temperature violates the temperature bound, and determine a temperature setpoint for each of a plurality of time steps in the future time period. The temperature setpoints achieve a target value of the cost function over the future time period. The controller is configured to control the cooling device to drive the indoor air temperature towards the temperature setpoint.
    Type: Application
    Filed: May 6, 2019
    Publication date: November 7, 2019
    Applicant: Johnson Controls Technology Company
    Inventors: Robert D. Turney, Henry O. Marcy, V, Zhizhong Pang
  • Patent number: 6232841
    Abstract: Power amplifiers having reactive networks (such as classes C, C-E, E and F) employ tunable reactive devices in their reactive networks, with the reactive devices respective reactance values capable of being adjusted by means of respective control signals. The tunable reactive devices are made from micro-electromechanical (MEM) devices capable of being integrated with the control circuitry needed to produce the control signals and other amplifier components on a common substrate. The reactive components have high Q values across their adjustment range, enabling the amplifier to produce an output with a low harmonic content over a wide range of input signal frequencies, and a frequency agile, high quality output. The invention can be realized on a number of foundry technologies.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: May 15, 2001
    Assignee: Rockwell Science Center, LLC
    Inventors: James L. Bartlett, Mau Chung F. Chang, Henry O. Marcy, 5th, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao, Deepak Mehrotra, J. L. Julian Tham
  • Patent number: 6232847
    Abstract: A high-Q precision integrated reversibly trimmable singleband oscillator and tunable multiband oscillator are presented that overcome the problems laser trimming and solid state switches. This is accomplished using micro-electromechanical system (MEMS) technology to integrate an amplifier and its tunable LC network on a common substrate. The LC network can be configured to provide a very narrow bandwidth frequency response which peaks at one or more very specific predetermined frequencies without de-Qing the oscillator.
    Type: Grant
    Filed: May 28, 1998
    Date of Patent: May 15, 2001
    Assignee: Rockwell Science Center, LLC
    Inventors: Henry O. Marcy, 5th, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao, James L. Bartlett, Mau Chung F. Chang, Deepak Mehrotra, J. L. Julian Tham
  • Patent number: 6208247
    Abstract: Wireless integrated miniature sensing stations which can be organized into a communicating network allow sensitive detection and analysis of vibration, infrared radiation, sound, or other physical signals indicative of an intruder or condition to be monitored over a wide area. The sensing stations operate on low power and include a sensor or sensors, a digital signal processor, a microprocessor, and a wireless transceiver for communication. Network communication is facilitated by multiple relayed transmissions from station to station.
    Type: Grant
    Filed: August 18, 1998
    Date of Patent: March 27, 2001
    Assignee: Rockwell Science Center, LLC
    Inventors: Jonathan R. Agre, Loren P. Clare, Henry O. Marcy, 5th, Allen J. Twarowski, William Kaiser, Wilmer A. Mickelson, Michael D. Yakos, Christian J. Loeffelholz, Jonathan R. Engdahl
  • Patent number: 6094102
    Abstract: A frequency stabilizer circuit in the form of a charge-pump phase-lock loop utilizing a MEMS capacitance device, preferably a tunable MEMS capacitor or a MEMS capacitor bank, which more rapid and with a greater precision determine the phase and frequency of a carrier signal so that it can be extracted, providing an information signal of interest. Such MEMS devices have the added advantage of providing linear capacitance, low insertion losses, higher isolation and high reliability, they run on low power and permit the entire circuit to be fabricated on a common substrate. The use of the MEMS capacitance device reduces unwanted harmonics generated by the circuit's charge pump allowing the filtering requirements to be relaxed or perhaps eliminated.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: July 25, 2000
    Assignee: Rockwell Science Center, LLC
    Inventors: Mau Chung F. Chang, Henry O. Marcy, 5th, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao, James L. Bartlett, J. L. Julian Tham, Deepak Mehrotra
  • Patent number: 6049702
    Abstract: The passive components of a transceiver, such as transmit/receive switches, antennas, inductors, capacitors and resonators, are integrated together on a common substrate to form an integrated passive transceiver section, which, in combination with other components, provides a highly reliable, low-cost, high-performance transceiver. Micro-electromechanical (MEM) device fabrication techniques are used to provide low-loss, high-performance switches and low-loss, high-Q reactive components, and enable the passive transceiver section's high level of integration. The passive components are preferably integrated on a low-cost glass substrate, with transceiver circuits containing active components fabricated on a separate substrate; the separate substrates are interconnected to implement the RF/analog and analog/digital interface portions of a transceiver. Additional MEM switching devices permit multiple, parallel signal paths to be switched in and out of the transceiver circuitry as needed to optimize performance.
    Type: Grant
    Filed: December 4, 1997
    Date of Patent: April 11, 2000
    Assignee: Rockwell Science Center, LLC
    Inventors: J. L. Julian Tham, Deepak Mehrotra, James L. Bartlett, Mau Chung F. Chang, Henry O. Marcy, 5th, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao
  • Patent number: 5959516
    Abstract: A high Q MEMS capacitor that can be continuously tuned with a large tuning ratio or reversibly trimmed using an electrostatic force. The tunable capacitor has a master/slave structure in which a control voltage is applied to the master (control) capacitor to set the capacitance of the slave (signal) capacitor to which an RF signal is applied via a suspended mechanical coupler. The master-slave structure reduces tuning error by reducing the signal capacitor's surface area and increasing its spring constant, and may eliminate the need for discrete blocking inductors by electrically isolating the control and signal capacitors. The trimmable capacitor provides an electrostatic actuator that selectively engages a stopper with teeth on a tunable capacitor structure to fix the trimmed capacitance.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: September 28, 1999
    Assignee: Rockwell Science Center, LLC
    Inventors: Mau Chung F. Chang, Henry O. Marcy, 5.sup.th, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao, Sangtae Park, J. L. Julian Tham, Deepak Mehrotra, James L. Bartlett
  • Patent number: 5880921
    Abstract: A monolithically integrated switched capacitor bank using MEMS technology that is capable of handling GHz signal frequencies in both the RF and millimeter bands while maintaining precise digital selection of capacitor levels over a wide tuning range. Each MEMS switch includes a cantilever arm that is affixed to the substrate and extends over a ground line and a gapped signal line. An electrical contact is formed on the bottom of the cantilever arm positioned above and facing the gap in the signal line. A top electrode atop the cantilever arm forms a control capacitor structure above the ground line. A capacitor structure, preferably a MEMS capacitor suspended above the substrate at approximately the same height as the cantilever arm, is anchored to the substrate and connected in series with a MEMS switch.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: March 9, 1999
    Assignee: Rockwell Science Center, LLC
    Inventors: J.L. Julian Tham, James L. Bartlett, Mau Chung F. Chang, Henry O. Marcy, 5th, Deepak Mehrotra, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao
  • Patent number: 5872489
    Abstract: An integrated, tunable inductance network features a number of fixed inductors fabricated on a common substrate along with a switching network made up of a number of micro-electromechanical (MEM) switches. The switches selectably interconnect the inductors to form an inductance network having a particular inductance value, which can be set with a high degree of precision when the inductors are configured appropriately. The preferred MEM switches introduce a very small amount of resistance, and the inductance network can thus have a high Q. The MEM switches and inductors can be integrated using common processing steps, reducing parasitic capacitance problems associated with wire bonds and prior art switches, increasing reliability, and reducing the space, weight and power requirements of prior art designs.
    Type: Grant
    Filed: April 28, 1997
    Date of Patent: February 16, 1999
    Assignee: Rockwell Science Center, LLC
    Inventors: Mau Chung F. Chang, Henry O. Marcy, 5th, Deepak Mehrotra, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, Jun J. Yao, James L. Bartlett, J. L. Julian Tham
  • Patent number: 5834975
    Abstract: An integrated, variable gain microwave frequency power amplifier comprises a number of individual amplifier stages which contain microwave frequency active devices. Each stage is fed with a common input signal, and the individual stage outputs are connected to respective micro-electromechanical (MEM) switches which, when closed, connect the individual outputs together to form the power amplifier's output. The power amplifier's gain is determined by the number of outputs connected together. The preferred switch provides low insertion loss and excellent electrical isolation, enabling a number of amplifier stages to be efficiently interconnected to provide a wide dynamic range power amplifier. The switches are preferably integrated on a common substrate with the active devices, eliminating the need for wire bonds and reducing parasitic capacitances.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: November 10, 1998
    Assignee: Rockwell Science Center, LLC
    Inventors: James L. Bartlett, Mau Chung F. Chang, J. Aiden Higgins, Henry O. Marcy, 5th, Deepak Mehrotra, Kenneth D. Pedrotti, David R. Pehlke, Charles W. Seabury, J. L. Julian Tham, Jun J. Yao
  • Patent number: 5581010
    Abstract: A nonlinear optical material includes a noncentrosymmetric crystal of an anionic boron complex salt containing a cation and at least one organic ligand coordinated to a boron atom. The nonlinear optical crystal may consist of a compound having the formula A[BC.sub.2 ] where A is a monocation, B is boron, and C is the organic ligand, or a compound having the formula A[BC.sub.2 ].sub.2 where A is a dication, B is boron, and C is the organic ligand. The organic ligands may also be organic molecules having .alpha.-dihydroxy functionalities. Furthermore, the organic ligands may be selected from the group consisting of .alpha.-hydroxy carboxylic acids and 1,2-diols or from the group consisting of d-malic acid, d-lactic acid, d-tartaric acid, dimethyl-d-tartrate, diethyl-d-tartrate, l-malic acid, l-lactic acid, l-tartaric acid, dimethyl-l-tartrate, diethyl-l-tartrate, and ethylene glycol.
    Type: Grant
    Filed: July 22, 1994
    Date of Patent: December 3, 1996
    Assignee: Rockwell International Corporation
    Inventors: Patricia H. Cunningham, Leslie F. Warren, Jr., Henry O. Marcy, 5th, Mark J. Rosker
  • Patent number: 5452026
    Abstract: A vision improvement device using glasses in which one or more lens is a rapid shutter, such as a liquid crystal shutter. The subject wears the glasses and the shutter is rapidly operated such that vision from the strong eye is subdued or blocked off long enough to allow the weak eye information to be processed by the brain to promote improved depth perception. One eye is permitted to see while the other eye is occluded. By control of the shutter the weaker eye can be exposed for longer than the stronger eye to compensate for the brain's ability to ignore the weak eye information. In an alternative embodiment, individual eyes may be manipulated to favor one over the other to achieve the benefit of improving depth perception. As such, control over vision results in an improved balance of per-eye information, increasing stereoscopic vision.
    Type: Grant
    Filed: May 19, 1994
    Date of Patent: September 19, 1995
    Inventor: Henry O. Marcy, III
  • Patent number: 5418682
    Abstract: An electrical capacitor includes an organic electrolyte to provide high power, high energy density, and broad operating temperature range. The capacitor includes electrodes and an electrolyte system comprising a salt combined with a solvent containing a nitrile. The electrolyte system is selected to be relatively nonreactive and difficult to oxidize or reduce so as to produce a high electric potential range. As examples, the electrolyte may include a solvent selected from the group consisting of acetonitrile, succinonitrile, glutaronitrile, propylene carbonate, and ethylene carbonate; a salt cation selected from the group consisting of tetraalkylamonium (R.sub.4 N.sup.+) and alkali metals; and an anion selected from the group consisting of trifluoromethylsulfonate (CF.sub.3 SO.sub.3.sup.-), bistrifluoromethylsulfurylimide (N(CF.sub.3 SO.sub.2).sub.2.sup.-), tristrifluoromethylsulfurylcarbanion (C(CF.sub.3 SO.sub.2).sub.3.sup.-), tetrafluoroborate (BF.sub.4.sup.-), hexafluorophosphate (PF.sub.6.sup.
    Type: Grant
    Filed: June 16, 1994
    Date of Patent: May 23, 1995
    Assignee: Rockwell International Corporation
    Inventors: Leslie F. Warren, Jr., Henry O. Marcy, 5.sup.th
  • Patent number: 4240073
    Abstract: A cathode ray tube display system apparatus and method in which a memory stores the addresses necessary to cause the electron beam of a cathode ray tube to impinge upon predetermined locations on the cathode ray tube screen. A single beam electron gun can thus selectively activate different types of phosphors in an array of phosphor locations to produce, for example, a multicolor display. An apparatus and method in which a memory stores addresses necessary to cause images to be projected at predetermined locations in a cathode ray tube projection display system.
    Type: Grant
    Filed: May 15, 1978
    Date of Patent: December 16, 1980
    Assignee: Thomas Electronics, Inc.
    Inventors: Peter Seats, Henry O. Marcy