Patents by Inventor Henry S. Katzenstein

Henry S. Katzenstein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5627396
    Abstract: A bridging member extending across a cavity in a semiconductor substrate (e.g. signal crystal silicon) has successive layers--a masking layer, an electrically conductive layer (e.g. polysilicon) and an insulating layer (e.g. SiO.sub.2). A first electrical contact (e.g. gold coated with ruthenium) extends on the insulating layer in a direction perpendicular to the extension of the bridging member across the cavity. A pair of bumps (e.g. gold) are on the insulating layer each between the contact and one of the cavity ends. Initially the bridging member and then the contact and the bumps are formed on the substrate and then the cavity is etched in the substrate through holes in the bridging member. A pair of second electrical contacts (e.g. gold coated with ruthenium) are on the surface of an insulating substrate (e.g. pyrex glass) adjacent the semiconductor substrate. The two substrates are bonded after the contacts are cleaned.
    Type: Grant
    Filed: May 18, 1995
    Date of Patent: May 6, 1997
    Assignee: Brooktree Corporation
    Inventors: Christopher D. James, Henry S. Katzenstein
  • Patent number: 5620933
    Abstract: A bridging member extending across a cavity in a semiconductor substrate (e.g. single crystal silicon) has successive layers--a masking layer, an electrically conductive layer (e.g. polysilicon) and an insulating layer (e.g. SiO.sub.2). A first electrical contact (e.g. gold coated with ruthenium) extends on the insulating layer in a direction perpendicular to the extension of the bridging member across the cavity. A pair of bumps (e.g. gold) are on the insulating layer each between the contact and one of the cavity ends. Initially the bridging member and then the contact and the bumps are formed on the substrate and then the cavity is etched in the substrate through holes in the bridging member. A pair of second electrical contacts (e.g. gold coated with ruthenium) are on the surface of an insulating substrate (e.g. pyrex glass) adjacent the semiconductor substrate. The two substrates are bonded after the contacts are cleaned.
    Type: Grant
    Filed: May 19, 1995
    Date of Patent: April 15, 1997
    Assignee: Brooktree Corporation
    Inventors: Christopher D. James, Henry S. Katzenstein
  • Patent number: 5479042
    Abstract: A bridging member extending across a cavity in a semiconductor substrate (e.g. single crystal silicon) has successive layers--a masking layer, an electrically conductive layer (e.g. polysilicon) and an insulating layer (e.g. SiO.sub.2). A first electrical contact (e.g. gold coated with ruthenium) extends on the insulating layer in a direction perpendicular to the extension of the bridging member across the cavity. A pair of bumps (e.g. gold) are on the insulating layer each between the contact and one of the cavity ends. Initially the bridging member and then the contact and the bumps are formed on the substrate and then the cavity is etched in the substrate through holes in the bridging member. A pair of second electrical contacts (e.g. gold coated with ruthenium) are on the surface of an insulating substrate (e.g. pyrex glass) adjacent the semiconductor substrate. The two substrates are bonded after the contacts are cleaned.
    Type: Grant
    Filed: February 1, 1903
    Date of Patent: December 26, 1995
    Assignee: Brooktree Corporation
    Inventors: Christopher D. James, Henry S. Katzenstein
  • Patent number: 5245332
    Abstract: A reader transmits a pulse to a transponder. The transponder responds by transmitting a particular number (e.g. 10) of signals at a frequency dependent upon the identifying code recorded in the transponder. The reader then transmits a pulse of an opposite polarity to that previously transmitted. The transponder responds by generating 10 signals at a second frequency different from the first frequency. In this way, sequences of pulses alternatively of opposite polarity are transmitted by the reader and sequences of signals at the first and second frequencies are transmitted by the transponder. The reader decodes the sequences of signals at the first and second frequencies, in accordance with the order of the frequencies of such signals, to identify the code at the transponder. The transponder may have a programmable memory to store the code. To program the memory with such a code, the reader transmits sequences of pulses, each sequence coding for a programmable item of information (e.g.
    Type: Grant
    Filed: July 11, 1990
    Date of Patent: September 14, 1993
    Assignee: Iedsco Oy
    Inventor: Henry S. Katzenstein
  • Patent number: 5111204
    Abstract: Apparatus converts into an analog value signals representing digital values. Sub-sets of switches are provided, the number of switches in each sub-set being directly related to the digital significance of the switches in such sub-set. The switches in each sub-set may be paired to provide for a conductivity of one switch in each pair. The signals representing individual digital values are introduced to the associated sub-sets to provide for the conductivity of an individual one of the switches in each pair in accordance with the digital value represented by such signals. The switches are connected in a recursive relationship defined by repetitions of a basic block. Each basic block is in turn defined by a pair of basic sub-blocks. A plurality of capacitors are also provided as output members. The capacitors are connected to the recursive relationship of the switches to charge the capacitors through paths defined by the conductive ones of the switches.
    Type: Grant
    Filed: July 16, 1990
    Date of Patent: May 5, 1992
    Assignee: Brooktree Corporation
    Inventor: Henry S. Katzenstein
  • Patent number: 5059980
    Abstract: First terminals are equally spaced on a substantially uniformly resistive thin film at or near a first side edge of the film at progressive positions downwardly from the top of the film. Near the bottom of the film, second terminals are preferably equally spaced progressively inwardly from the first side edge of the film. An energizing potential is applied to the film either at the corner defined by the top and the first side edge of the film or in a curved pattern of positions near such corner. A reference potential (e.g. ground) is applied to the film near the otherside of the film and near the bottom edge of the film. Voltages are thus produced at the successive ones of the first terminals with an exponential relationship with respect to such terminal positions and at the successive ones of the second terminals with a linear relationship with respect to such terminal positions. The disposition of the second terminals may be compensated for deviations in a logarithmic response in an output member (e.g.
    Type: Grant
    Filed: October 12, 1990
    Date of Patent: October 22, 1991
    Assignee: Brooktree Corporation
    Inventor: Henry S. Katzenstein
  • Patent number: 4928102
    Abstract: A plurality of equally spaced terminals may be disposed at a side edge of a substantially uniformly resistive thin film. A reference potential (e.g. ground) may be applied to the second side of the film. An energizing voltage may be applied at the juncture between the first side edge and a particular one of the top and bottom edges of the film. In this way, the successive terminals receive voltages with a logarithmic relationship relative to the terminal positions. When a linear relationship of voltages is desired at successive terminals in a low range, no reference potential is applied to the second side edge of the thin film. Instead, the other one of the top and bottom edges may receive the reference voltage. Alternatively no reference voltage may be applied and terminals indicating the linear voltages may be disposed at such other edge.
    Type: Grant
    Filed: August 11, 1988
    Date of Patent: May 22, 1990
    Assignee: Brooktree Corporation
    Inventor: Henry S. Katzenstein
  • Patent number: 4899103
    Abstract: A variable electrical current in a first winding on a magnetizable core produces a magnetomotive force in the core. A second core winding produces an opposing magnetomotive force digitally adjustable periodically by a third core winding, a pair of switches and a flip-flop coupled to a center tap for alternately closing such switches when triggered to opposite states. The flip-flop is triggered between opposite states when the third winding current reaches a particular magnitude. In each cycle, the time differences for producing the particular magnitudes and the opposite polarities are dependent upon the remanent core flux. Such time differences are counted digitally upwardly and downwardly for opposite polarities. The second winding current is adjusted digitally in each cycle in a direction to minimize such count. The magnitudes of successive adjustments may be compared periodically by adaptive tracking techniques to control the magnitudes of subsequent adjustments.
    Type: Grant
    Filed: July 16, 1987
    Date of Patent: February 6, 1990
    Assignee: Brooktree Corporation
    Inventor: Henry S. Katzenstein
  • Patent number: 4877965
    Abstract: A fluorometer for measuring a particular fluorescence emanating from a specimen and operating in accordance with the following method. Producing a burst of concentrated light energy and directing the concentrated light energy toward the specimen to produce a fluorescence from the specimen including the particular fluorescence. Preferably producing an image of the fluorescence. Detecting the fluorescence and producing a signal in accordance with the fluorescence. Controlling the passage of the image of the fluorescence for detecting within a particular time period so as to optimize the detection of the particular fluorescence. Timing the operation to sequence the detection of the fluorescence within the particular time period after the production of the burst of concentrated light energy. Scanning the fluorescence from the specimen for forming signals representative of the fluorescence from the specimen.
    Type: Grant
    Filed: July 1, 1985
    Date of Patent: October 31, 1989
    Assignee: Diatron Corporation
    Inventors: Walter B. Dandliker, Howard S. Barr, Henry S. Katzenstein, Keith R. Watson
  • Patent number: 4857929
    Abstract: Sub-sets of switches are provided each having a number of switches directly related to an individual bit in a binary coded input word. Signals representing the individual bits are introduced to the switches in the different sub-sets to obtain switch conductivities in accordance with such binary bits. The switches are connected in a repetitive array to provide paths through the conductive ones of the switches. The switches are connected to output members and a line to introduce the current through the output members to the line in accordance with the pattern of switch conductivities. This provides for progressive increases in the number of the output members connected to the line, ad for a continued connection to the line of output members previously connected to the line, with progressive increases in the binary value. The cumulative current through the line is indicative of the analog value.
    Type: Grant
    Filed: April 19, 1985
    Date of Patent: August 15, 1989
    Assignee: Brooktree Corporation
    Inventor: Henry S. Katzenstein
  • Patent number: 4752776
    Abstract: A reader identifies information, such as the identity of an object at a transponder, provided in binary form by the transponder. The reader initially generates a pulse which activates the transponder into transmitting a series of signals, such as by magnetic induction, to the reader. Upon each count of a particular number of signals in the reader, the reader generates an additional pulse which causes the transponder to transmit a new series of signals to the reader. The generation of the pulses by the reader may occur through the charge and discharge of energy in a storage member such as a capacitance. The series of signals produced by the transponder may have either a first frequency or a second frequency. The signals may be generated in each sequence at the first and second frequencies in an order dependent upon (a) the binary code identifying the object at the transponder and (b) the polarity of the pulse produced by the transponder in such sequence.
    Type: Grant
    Filed: March 14, 1986
    Date of Patent: June 21, 1988
    Assignee: Enguvu AG/SA/Ltd.
    Inventor: Henry S. Katzenstein
  • Patent number: 4733153
    Abstract: First and second switches such as transistors are connected to a charge storage member such as a capacitance. The capacitance is charged through the first transistor from a positive supply when the transistor becomes conductive. The capacitances is discharged through the second transistor to a reference potential such as ground when the second transistor becomes conductive. The conductivities of the first and second transistors are controlled by pulses from a pulse source such as a transformer. The transformer primary produces a pulse of one polarity upon the occurrence of the leading edge of an input signal and a pulse of an opposite polarity upon the occurrence of the trailing edge of the input signal. Two secondary windings are respectively connected in opposite polarities to the bases of the first and second transistors to provide for the conductivity of only one of the transistors at any one time.
    Type: Grant
    Filed: July 2, 1987
    Date of Patent: March 22, 1988
    Assignee: Brooktree Corporation
    Inventor: Henry S. Katzenstein
  • Patent number: RE34782
    Abstract: A fluorometer for measuring a particular fluorescence emanating from a specimen and operating in accordance with the following method. Producing a burst of concentrated light energy and directing the concentrated light energy toward the specimen to produce a fluorescence from the specimen including the particular fluorescence. Preferably producing an image of the fluorescence. Detecting the fluorescence and producing a signal in accordance with the fluorescence. Controlling the passage of the image of the fluorescence for detecting within a particular time period so as to optimize the detection of the particular fluorescence. Timing the operation to sequence the detection of the fluorescence within the particular time period after the production of the burst of concentrated light energy. Scanning the fluorescence from the specimen for forming signals representative of the fluorescence from the specimen.
    Type: Grant
    Filed: October 12, 1992
    Date of Patent: November 8, 1994
    Assignee: Diatron Corporation
    Inventors: Walter B. Dandliker, Howard S. Barr, Henry S. Katzenstein, Keith R. Watson