Patents by Inventor Henry S. Meeks

Henry S. Meeks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10815748
    Abstract: A unitary body includes magnesium and aluminum and at least one of iron, tungsten, nickel, or titanium and has a dissolution rate of at least 5 mg/(cm2·hr). The magnesium and aluminum and/or the iron, tungsten, nickel, and/or titanium can be present in discrete solid regions. The unitary body can include multiple sections having different compositions and different dissolution rates. The unitary body can be formed using solid-state powder metallurgy processes.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: October 27, 2020
    Inventors: Jonathan Meeks, Henry S. Meeks
  • Patent number: 10557695
    Abstract: A skeletal composite material includes an internal skeleton structure surrounded by a matrix material. The skeleton structure and the matrix are made of different materials having different properties. It should be appreciated that the skeleton structure and the matrix can be made of any suitable material including metal, ceramic, carbon, polymers, or combinations of these materials. Preferably, the skeleton structure and/or the matrix are made primarily of metal or ceramic. The skeletal composite material can be made by filling a skeleton structure with powder, compacting the skeleton structure and powder to form a preform, and consolidating the preform to form the skeletal composite material.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: February 11, 2020
    Assignee: Amaranthine Resources, LLC
    Inventors: Henry S. Meeks, Jonathan Meeks
  • Publication number: 20170160063
    Abstract: A skeletal composite material includes an internal skeleton structure surrounded by a matrix material. The skeleton structure and the matrix are made of different materials having different properties. It should be appreciated that the skeleton structure and the matrix can be made of any suitable material including metal, ceramic, carbon, polymers, or combinations of these materials. Preferably, the skeleton structure and/or the matrix are made primarily of metal or ceramic. The skeletal composite material can be made by filling a skeleton structure with powder, compacting the skeleton structure and powder to form a preform, and consolidating the preform to form the skeletal composite material.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 8, 2017
    Applicant: Advanced Materials and Manufacturing Technologies, LLC
    Inventors: Henry S. Meeks, Jonathan Meeks
  • Patent number: 8535604
    Abstract: A method of producing composites of micro-engineered, coated particulates embedded in a matrix of metal, ceramic powders, or combinations thereof, capable of being tailored to exhibit application-specific desired thermal, physical and mechanical properties to form substitute materials for nickel, titanium, rhenium, magnesium, aluminum, graphite epoxy, and beryllium. The particulates are solid and/or hollow and may be coated with one or more layers of deposited materials before being combined within a substrate of powder metal, ceramic or some combination thereof which also may be coated. The combined micro-engineered nano design powder is consolidated using novel solid-state processes that prevent melting of the matrix and which involve the application of varying pressures to control the formation of the microstructure and resultant mechanical properties.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: September 17, 2013
    Inventors: Dean M. Baker, Henry S. Meeks
  • Patent number: 7097807
    Abstract: Objects comprising Al-7.5 Mg particulate having pressure consolidated nanocrystalline coating material are formed. Oxides of the coating material, in particulate form, may become dispersed in the pressure consolidated, thereby increasing its strength.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: August 29, 2006
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, III, Marc S. Fleming
  • Patent number: 6630008
    Abstract: Objects comprising carbide particulate having pressure consolidated nanocrystalline coating material are formed. Oxides of the coating material, in particulate form, may become dispersed in the pressure consolidated object, thereby increasing its strength.
    Type: Grant
    Filed: September 18, 2000
    Date of Patent: October 7, 2003
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, III, Marc S. Fleming
  • Patent number: 6461564
    Abstract: The method of consolidating a body in any of initially powdered, sintered, fibrous, sponge, or other form capable of compaction, that includes providing flowable pressure transmission particles having carbonaceous and ceramic composition or compositions; heating particles to elevated temperature; locating the heated particles in a bed; positioning the body at the bed, to receive pressure transmission; effecting pressurization of the bed to cause pressure transmission via the particles to the body, thereby to compact and consolidate the body into desired shape, increasing its density, the body consisting essentially of one or more metals selected from the following group: tungsten, rhenium, uranium, tantalum, platinum, copper, gold, hafnium, molybdenum, titanium, zirconium, aluminum, the consolidated body having, along a body dimension, one of the following characteristics: decreasing strength, increasing strength, or decreasing ductility (strain hardening) and increasing ductility (strain hardening).
    Type: Grant
    Filed: June 12, 2000
    Date of Patent: October 8, 2002
    Inventors: Morris F. Dilmore, Henry S. Meeks, III, Marc S. Fleming
  • Publication number: 20020136658
    Abstract: The method of consolidating a body in any of initially powdered, sintered, fibrous, sponge, or other form capable of compaction, that includes providing flowable pressure transmission particles having carbonaceous and ceramic composition or compositions; heating particles to elevated temperature; locating the heated particles in a bed; positioning the body at the bed, to receive pressure transmission; effecting pressurization of the bed to cause pressure transmission via the particles to the body, thereby to compact and consolidate the body into desired shape, increasing its density, the body consisting essentially of one or more metals selected from the following group: tungsten, rhenium, uranium, tantalum, platinum, copper, gold, hafnium, molybdenum, titanium, zirconium, aluminum, the consolidated body having, along a body dimension, one of the following characteristics: decreasing strength, increasing strength, or decreasing ductility (strain hardening) and increasing ductility (strain hardening).
    Type: Application
    Filed: January 8, 2002
    Publication date: September 26, 2002
    Inventors: Morris F. Dilmore, Henry S. Meeks, Marc S. Fleming
  • Patent number: 6355209
    Abstract: A method of consolidating metal powder to form an object that includes pressing the powder into a preform, and preheating the preform to elevated temperature; providing flowable pressure transmitting particles and transmitting microwaves into the particles to heat same, and providing a bed of the flowable and heated pressure transmitting particles; positioning the preform in such relation to the bed that the particles substantially encompass the perform; and pressurizing the bed to compress the particles and cause pressure transmission to the preform, thereby to consolidate the preform into a desired object shape, the powder of step a) consisting essentially of at least two of the following: W, Ni, Fe, Co, manganese and titanium, and preferably at least three of same.
    Type: Grant
    Filed: April 18, 2000
    Date of Patent: March 12, 2002
    Assignee: Ceracon, Inc.
    Inventors: Morris F. Dilmore, Henry S. Meeks, III, Marc S. Fleming
  • Patent number: 6309594
    Abstract: A method of consolidating metal powder to form an object, includes: a) pressing the powder into a preform, and preheating the preform to elevated temperature, b) providing flowable pressure transmitting particles and transmitting microwaves into the particles to heat same, and providing a bed of the flowable and heated pressure transmitting particles, c) positioning the preform in such relation to the bed that the particles substantially encompass the preform, d) and pressurizing the bed to compress said particles and cause pressure transmission to the preform, thereby to consolidate the preform into a desired object shape.
    Type: Grant
    Filed: June 24, 1999
    Date of Patent: October 30, 2001
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, III, Lucile Lansing
  • Patent number: 6228140
    Abstract: A process of consolidating tantalum metal powder to essentially random texture, and the product thereby produced.
    Type: Grant
    Filed: November 29, 1999
    Date of Patent: May 8, 2001
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, III, Marc A. Fleming, Lucile Lansing
  • Patent number: 6123896
    Abstract: A process of consolidating tantalum metal powder to essentially random texture by pressing a preform in a bed of flowable pressure transmitting particles, and the product thereby produced.
    Type: Grant
    Filed: January 29, 1999
    Date of Patent: September 26, 2000
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, III, Marc A. Fleming, Lucile Lansing
  • Patent number: 5032352
    Abstract: The method of consolidating a powder material to form a composite part includes forming a pattern which is a scaled-up version of the part to be formed; employing the pattern to produce a flexible mold with interior conformation matching the pattern exterior; introducing a previously formed shape, insert or body into the mold; introducing consolidatable powder material into the mold; compacting the mold to thereby compress the powder and previously formed shape into a preform which is to be consolidated; separating the preform from the mold; providing a bed of pressure transmission particles, and positioning the preform in the bed; and compacting the preform in the bed of particles by transmission of pressure to the preform via the bed, to thereby consolidate the preform into a dense, desired shape part.
    Type: Grant
    Filed: September 21, 1990
    Date of Patent: July 16, 1991
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, Stephen P. Swinney
  • Patent number: 4975414
    Abstract: The method of producing a superconducting product includes: providing a pressed-powder preform consisting essentially of REBa.sub.2 Cu.sub.3 O.sub.x where 6.0<x<7.0; preheating the preform to elevated temperature for a time period between 0 and 10 minutes, within a medium consisting of a mixture of refractory ceramic particles, carbonaceous particles and ultra fine graphitic particles; providing a preheated grain bed and embedding the heated preform in that bed, the bed having the same composition as the medium; and consolidating the preform to at least about 95% of theoretical density by application of pressure to the grain bed, thereby to form the product.
    Type: Grant
    Filed: November 13, 1989
    Date of Patent: December 4, 1990
    Assignee: Ceracon, Inc.
    Inventors: Henry S. Meeks, Sundeep V. Rele