Patents by Inventor Henry Samueli

Henry Samueli has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6731691
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: May 4, 2004
    Assignee: Broadcom Corp.
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, Henry Samueli, David E. Kruse, Arthur Abnous
  • Publication number: 20040071243
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: October 8, 2003
    Publication date: April 15, 2004
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20040071242
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: October 8, 2003
    Publication date: April 15, 2004
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, Henry Samueli, David E. Kruse, Arthur Abnous
  • Patent number: 6714608
    Abstract: Carrier signals are modulated by information (e.g., television) signals in a particular frequency range. The information signals are oversampled at a first frequency greater than any of the frequencies in the particular frequency range to provide digital signals at a second frequency. The digital signals are introduced to a carrier recovery loop which provides a feedback to regulate the frequency of the digital signals at the second frequency. The digital signals are introduced to a symbol recovery loop which provides a feedback to maintain the time for the production of the digital signals in the middle of the data signals. The gain of the digital signals is also regulated in a feedback loop. The digital signals are processed to recover the data in the data signals. By providing digital feedbacks, the information recovered from the digital signals can be quite precise. In one embodiment, the carrier signals are demodulated to produce baseband inphase and quadrature signals.
    Type: Grant
    Filed: January 27, 1998
    Date of Patent: March 30, 2004
    Assignee: Broadcom Corporation
    Inventors: Henry Samueli, Alan Y. Kwentus, Thomas D. Kwon
  • Patent number: 6711227
    Abstract: To synchronize a regularly occurring pulse train to the average of a bunched pulse train, an oscillator generates a plurality of differently phase shifted signals at a given frequency. One of the phase shifted signals is selected as an output signal. The output signal is compared with the bunched pulse train. The selected phase shifted signal is changed responsive to the comparison so the output signal occurs at the average frequency of the bunched pulse train. The oscillator is formed as a plurality of differential amplifier stages having equal controllable delays. The stages are connected together to form a ring oscillator. The output signal is compared with the bunched pulse train through a FIFO. A signal representative of the state of the FIFO is used as an error signal to control the selection of the phase shifted signal to be used as the output signal.
    Type: Grant
    Filed: February 4, 2000
    Date of Patent: March 23, 2004
    Assignee: Broadcom Corporation
    Inventors: Tarek Kaylani, Fang Lu, Henry Samueli
  • Publication number: 20040037368
    Abstract: Digital data signals at a variable input frequency are converted by a numerically controlled oscillator and an interpolator to a signal at a fixed output sampling frequency. The conversion of the variable input frequency to the fixed output sampling frequency may be by a factor other than an integer. The interpolated digital data signals at the fixed output sampling frequency are then modulated into a pair of trigonometric signals at a programmable carrier frequency, one signal having a cosine function and the other signal having a sine function. The modulated signals at the fixed output sampling frequency are then combined to create a modulated signal at a carrier frequency determined by the frequency of the sine and cosine signals. The modulated signal is sampled at the fixed output sampling frequency and converted to a corresponding analog signal using a digital-to-analog converter.
    Type: Application
    Filed: August 22, 2003
    Publication date: February 26, 2004
    Applicant: Broadcom Corporation
    Inventors: Henry Samueli, Joseph I. Laskowski
  • Publication number: 20040022327
    Abstract: Carrier signals modulated by information (video and/or data) signals are received through a cable and are converted to modulated signals at an intermediate frequency. The IF signals are sampled at a particular frequency to produce digital information signals. The digital information signals are introduced to a variable interpolator which produces first digital signals. The first digital signals are introduced to a complex multiplier which produces second digital signals. The second digital signals pass to an adaptive equalizer which selects for each of the second signals in accordance with the amplitude of such second signals, an individual one of a multitude of amplitude levels involved in quadrature amplitude modulation. These selected amplitude levels represent the information (video and/or data). The output signals from the adaptive equalizer are introduced to a first signal recovery loop which includes a first numerically controlled oscillator.
    Type: Application
    Filed: April 23, 2003
    Publication date: February 5, 2004
    Inventors: Henry Samueli, Loke K. Tan, Jeffrey S. Putnam
  • Patent number: 6674823
    Abstract: Digital data signals at a variable input frequency are converted by a numerically controlled oscillator and an interpolator to a signal at a fixed output sampling frequency. The conversion of the variable input frequency to the fixed output sampling frequency may be by a factor other than an integer. The interpolated digital data signals at the fixed output sampling frequency are then modulated into a pair of trigonometric signals at a programmable carrier frequency, one signal having a cosine function and the other signal having a sine function. The modulated signals at the fixed output sampling frequency are then combined to create a modulated signal at a carrier frequency determined by the frequency of the sine and cosine signals. The modulated signal is sampled at the fixed output sampling frequency and converted to a corresponding analog signal using a digital-to-analog converter.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: January 6, 2004
    Assignee: Broadcom Corporation
    Inventors: Henry Samueli, Joseph J. Laskowski
  • Patent number: 6650624
    Abstract: A number of features for enhancing the performance of a cable transmission system in which data is transmitted between a cable modem termination system at a headend and a plurality of cable modems located different distances from the headend. The power transmission level, slot timing, and equalization of the cable modems are set by a ranging process. Data is transmitted by the modems in fragmented form. Various measures are taken to make transmission from the cable modems robust. The upstream data transmission is controlled to permit multiple access from the cable modems.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: November 18, 2003
    Assignee: Broadcom Corporation
    Inventors: Thomas J. Quigley, Jonathan S. Min, Lisa V. Denney, Henry Samueli, Sean F. Nazareth, Feng Chen, Fang Lu, Christopher R. Jones
  • Publication number: 20030123572
    Abstract: An aspect of the invention provides for recovering communicated information in a communication system. Recovering communicated information in a communication system may include generating a first digital signal from a received analog signal bearing communicated information, the first digital signal having a pre-cursor response and a post-cursor response. A second digital signal may be generated that limits a duration of at least a portion of the post-cursor response and a third digital signal may be generated that inhibits at least a portion of the pre-cursor response. A fourth digital signal that inhibits at least a portion of the post-cursor response and a fifth digital signal that limits a duration of at least a portion of the fourth signal may be generated in order to recover the communicated information. A sixth digital signal based on at least the third digital signal and the fifth digital signal may be generated.
    Type: Application
    Filed: September 30, 2002
    Publication date: July 3, 2003
    Inventors: Henry Samueli, Fang Lu, Avanindra Madisetti
  • Patent number: 6570942
    Abstract: Carrier signals modulated by information (video and/or data) signals are received through a cable and are converted to modulated signals at an intermediate frequency. The IF signals are sampled at a particular frequency to produce digital information signals. The digital information signals are introduced to a variable interpolator which produces first digital signals. The first digital signals are introduced to a complex multiplier which produces second digital signals. The second digital signals pass to an adaptive equalizer which selects for each of the second signals in accordance with the amplitude of such second signals, an individual one of a multitude of amplitude levels involved in quadrature amplitude modulation. These selected amplitude levels represent the information (video and/or data). The output signals from the adaptive equalizer are introduced to a first signal recovery loop which includes a first numerically controlled oscillator.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: May 27, 2003
    Assignee: Broadcom Corporation
    Inventors: Henry Samueli, Loke K. Tan, Jeffrey S. Putnam
  • Publication number: 20030054787
    Abstract: Circuitry to remove switches from signal paths in integrated circuit programmable gain attenuators. Programmable gain attenuators and programmable gain amplifiers commonly switch between signal levels using semi-conductor switches. Such switches may introduce non-linearities in the signal. By isolating the switches from the signal path linearity of the PGA can be improved.
    Type: Application
    Filed: October 29, 2002
    Publication date: March 20, 2003
    Inventors: Arya R. Behzad, Klaas Bult, Ramon A. Gomez, Chi-Hung Lin, Tom W. Kwan, Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Publication number: 20030043948
    Abstract: Digital data signals at a variable input frequency are converted by a numerically controlled oscillator and an interpolator to a signal at a fixed output sampling frequency. The conversion of the variable input frequency to the fixed output sampling frequency may be by a factor other than an integer. The interpolated digital data signals at the fixed output sampling frequency are then modulated into a pair of trigonometric signals at a programmable carrier frequency, one signal having a cosine function and the other signal having a sine function. The modulated signals at the fixed output sampling frequency are then combined to create a modulated signal at a carrier frequency determined by the frequency of the sine and cosine signals. The modulated signal is sampled at the fixed output sampling frequency and converted to a corresponding analog signal using a digital-to-analog converter.
    Type: Application
    Filed: October 17, 2002
    Publication date: March 6, 2003
    Applicant: Broadcom Corporation
    Inventors: Henry Samueli, Joseph J. Laskowski
  • Publication number: 20030007581
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Application
    Filed: July 29, 2002
    Publication date: January 9, 2003
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 6498823
    Abstract: Digital data signals at a variable input frequency are converted by a numerically controlled oscillator and an interpolator to a signal at a fixed output sampling frequency. The conversion of the variable input frequency to the fixed output sampling frequency may be by a factor other than an integer. The interpolated digital data signals at the fixed output sampling frequency are then modulated into a pair of trigonometric signals at a programmable carrier frequency, one signal having a cosine function and the other signal having a sine function. The modulated signals at the fixed output sampling frequency are then combined to create a modulated signal at a carrier frequency determined by the frequency of the sine and cosine signals. The modulated signal is sampled at the fixed output sampling frequency and converted to a corresponding analog signal using a digital-to-analog converter.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: December 24, 2002
    Assignee: Broadcom Corporation
    Inventors: Henry Samueli, Joseph I. Laskowski
  • Patent number: 6477200
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: November 9, 1999
    Date of Patent: November 5, 2002
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 6477199
    Abstract: A method for dynamically regulating the power consumption of a high-speed integrated circuit which includes a multiplicity of processing blocks. A first metric and a second metric, which are respectively related to a first performance parameter and a second performance parameter of the integrated circuit, are defined. The first metric is set at a pre-defined value. Selected blocks of the multiplicity of processing blocks are disabled in accordance with a set of pre-determined patterns. The second metric is evaluated, while the disabling operation is being performed, to generate a range of values of the second metric. Each of the values corresponds to the pre-defined value of the first metric. A most desirable value of the second metric is determined from the range of values and is matched to a corresponding pre-determined pattern. The integrated circuit is subsequently operated with selected processing blocks disabled in accordance with the matching pre-determined pattern.
    Type: Grant
    Filed: October 11, 2000
    Date of Patent: November 5, 2002
    Assignee: Broadcom Corp.
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, Henry Samueli
  • Patent number: 6472940
    Abstract: Circuitry to remove switches from signal paths in integrated circuit programmable gain attenuators. Programmable gain attenuators and programmable gain amplifiers commonly switch between signal levels using semi-conductors switches. Such switches may introduce non-linearities in the signal. By isolating the switches from the signal path linearity of the PGA can be improved.
    Type: Grant
    Filed: November 13, 2000
    Date of Patent: October 29, 2002
    Assignee: Broadcom Corporation
    Inventors: Arya R. Behzad, Klaas Bult, Ramon A. Gomez, Chi-Hung Lin, Tom W. Kwan, Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli
  • Patent number: 6459730
    Abstract: Digital signals provided by a repeater connected to a plurality of clients by unshielded twisted wire pairs, are converted to analog signals which become degraded during transmission through the wires. Clients convert the degraded analog signals to digital signals. Digital signal phases are coarsely adjusted to have assumed zero crossing times coincide in-time with a clock signal zero crossing. Signal polarity, and the polarity of any change, is determined at the assumed zero crossing times of the digital signals. Pre-cursor and post-cursor responses, resulting from signal degradation, are respectively inhibited by a feed forward and a decision feedback equalizer. The time duration of post-cursor response is further inhibited by a high pass filter and a tail canceller. Phase adjustments are made, after response inhibition, by determining the polarity, and the polarity of any change, at the assumed zero crossing times.
    Type: Grant
    Filed: January 13, 2000
    Date of Patent: October 1, 2002
    Assignee: Broadcom Corporation
    Inventors: Henry Samueli, Fang Lu, Avanindra Madisetti
  • Patent number: 6459746
    Abstract: Various systems and methods providing high speed decoding, enhanced power reduction and clock domain partitioning for a multi-pair gigabit Ethernet transceiver are disclosed. ISI compensation is partitioned into two stages; a first stage compensates ISI components induced by characteristics of a transmitter's partial response pulse shaping filter in a demodulator, a second stage compensates ISI components induced by characteristics of a multi-pair transmission channel in a Viterbi decoder. High speed decoding is accomplished by reducing the DFE depth by providing an input signal from a multiple decision feedback equalizer to the Viterbi based on a tail value and a subset of coefficient values received from a unit depth decision-feedback equalizer. Power reduction is accomplished by adaptively truncating active taps in the NEXT, FEXT and echo cancellation filters, or by disabling decoder circuitry portions, as channel response characteristics allow.
    Type: Grant
    Filed: February 9, 2001
    Date of Patent: October 1, 2002
    Assignee: Broadcom Corporation
    Inventors: Oscar E. Agazzi, John L. Creigh, Mehdi Hatamian, David E. Kruse, Arthur Abnous, Henry Samueli