Patents by Inventor HEQUAN JIANG

HEQUAN JIANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240038853
    Abstract: The MOS device with resistive field plate for realizing conductance modulation field effect in the present invention is based on the existing trench gate MOS device, and a semi-insulating resistive field plate electrically connected to the trench gate structure and the drain structure is added in the drift region, where the trench gate structure can control the on-off of the MOS channel, and the semi-insulating resistive field plate can adjust the doping concentration of the drift region to modulate the conductance of the on-state drift region and the distribution of off-state high-voltage blocking electric field, thus a lower on-resistance can be obtained. In addition, the modern 2.5-dimensional processing technology based on deep trench etching is adopted in the present invention, which is conducive to the miniaturization design and high density design of the structure and is more suitable for the More than Moore (beyond Moore) development of modern integrated semiconductor devices.
    Type: Application
    Filed: April 26, 2021
    Publication date: February 1, 2024
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Kaizhou TAN, Tian XIAO, Jiahao ZHANG, Yonghui YANG, Xiaoquan LI, Pengfei WANG, Ying PEI, Guangbo LI, Hequan JIANG, Peijian ZHANG, Sheng QIU, Liang CHEN, Wei CUI
  • Publication number: 20230411464
    Abstract: A shared-dielectric MOSFET device with a resistive-field-plate and a preparation method are provided. In the shared-dielectric MOSFET device, the semi-insulating resistive-field-plate electrically connected to the trench gate structure and the drain structure is introduced in the drift region of the existing trench gate MOS devices, and when the trench gate structure controls the MOS channel to be turned on or turned off, the semi-insulating resistive-field-plate can adjust the doping concentration of the drift region, to modulate the conductance of the on-state drift region and the distribution of a off-state high-voltage blocking electric field, thereby obtaining a lower on-resistance. Meanwhile, in the preparation method of the present disclosure, the modern 2.
    Type: Application
    Filed: November 1, 2021
    Publication date: December 21, 2023
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Kaizhou TAN, Tian XIAO, Jiahao ZHANG, Xiaoquan LI, Pengfei WANG, Ying PEI, Guangbo LI, Yonghui YANG, Hequan JIANG, Peijian ZHANG, Sheng QIU, Liang CHEN, Wei CUI
  • Patent number: 11848062
    Abstract: A voltage control method and a voltage control circuit for an anti-fuse memory array, including: obtaining a storage data address, dividing the storage data address into multiple subdata addresses, decoding each subdata address to obtain a corresponding group of decoder output signals, converting the corresponding group of decoder output signals into a group of control signals by a corresponding group of high voltage converters; connecting multiple groups of data selectors in series, outputting selection voltages input to each group of data selectors to an anti-fuse unit under the control of the corresponding group of control signals; programming or reading an anti-fuse unit; the selection voltages include one of a programming selection voltage, a reading selection voltage, and a non-designated selection voltage. The present disclosure reduces the number of transistors and saves layout areas when the programming or reading operation is performed.
    Type: Grant
    Filed: September 1, 2020
    Date of Patent: December 19, 2023
    Assignee: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Yan Wang, Peijian Zhang, Mingyuan Xu, Xian Chen, Feiyu Jiang, Xiyi Liao, Sheng Qiu, Zhengyuan Zhang, Ruzhang Li, Hequan Jiang, Yonghong Dai
  • Patent number: 11728820
    Abstract: The present disclosure belongs to the technical field of analog or digital-analog hybrid integrated circuits, and relates to a high-speed SAR_ADC digital logic circuit, in particular to a high-speed digital logic circuit for SAR_ADC and a sampling adjustment method. The digital logic circuit includes a comparator, a logic control unit parallel to the comparator, and a capacitor array DAC. The comparator and the logic control unit are simultaneously triggered by a clock signal. The comparator outputs a valid comparison result Dp/Dn, the logic control unit outputs a corresponding rising edge signal, the rising edge signal is slightly later than Dp/Dn output by the comparator through setting a delay match, Dp/Dn is captured by the corresponding rising edge signal, thereby settling a capacitor array. The present disclosure eliminates the disadvantage of the improper settling of the capacitor array of the traditional parallel digital logic.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: August 15, 2023
    Assignees: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Daiguo Xu, Hequan Jiang, Xueliang Xu, Jian'an Wang, Guangbing Chen, Dongbing Fu, Yuxin Wang, Xiaoquan Yu, Shiliu Xu, Tao Liu
  • Publication number: 20230197178
    Abstract: A voltage control method and a voltage control circuit for an anti-fuse memory array, including: obtaining a storage data address, dividing the storage data address into multiple subdata addresses, decoding each subdata address to obtain a corresponding group of decoder output signals, converting the corresponding group of decoder output signals into a group of control signals by a corresponding group of high voltage converters; connecting multiple groups of data selectors in series, outputting selection voltages input to each group of data selectors to an anti-fuse unit under the control of the corresponding group of control signals; programming or reading an anti-fuse unit; the selection voltages include one of a programming selection voltage, a reading selection voltage, and a non-designated selection voltage. The present disclosure reduces the number of transistors and saves layout areas when the programming or reading operation is performed.
    Type: Application
    Filed: September 1, 2020
    Publication date: June 22, 2023
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Yan WANG, Peijian ZHANG, Mingyuan XU, Xian CHEN, Feiyu JIANG, Xiyi LIAO, Sheng QIU, Zhengyuan ZHANG, Ruzhang LI, Hequan JIANG, Yonghong DAI
  • Patent number: 11558064
    Abstract: SAR ADC and sampling method based on single-channel TIS. The SAR ADC comprises: a capacitor array comprising a weight capacitor and a compensation capacitor, a first switch array, a second switch array, a channel switch group and a sampling switch; when in a sampling state: a lower plate of the weight capacitor is connected to an input voltage by means of the first switch array, and an upper plate of the capacitor array is connected to a common mode voltage by the sampling switch and the channel switch group; when in a successive approximation state: the lower plate of the weight capacitor is connected to a reference voltage by the second switch array. Input signals are sampled by using a unified to sampling switch, which solves the problem in the traditional technology that sampling moments are mismatched due to different sampling signals in each time-interleaved channel.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: January 17, 2023
    Assignees: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, CHONGQING GIGACHIP TECHNOLOGY CO. LTD.
    Inventors: Daiguo Xu, Hequan Jiang, Ruzhang Li, Jianan Wang, Guangbing Chen, Yuxin Wang, Dongbing Fu, Liang Li, Yan Wang
  • Publication number: 20220247423
    Abstract: SAR ADC and sampling method based on single-channel TIS. The SAR ADC comprises: a capacitor array comprising a weight capacitor and a compensation capacitor, a first switch array, a second switch array, a channel switch group and a sampling switch; when in a sampling state: a lower plate of the weight capacitor is connected to an input voltage by means of the first switch array, and an upper plate of the capacitor array is connected to a common mode voltage by the sampling switch and the channel switch group; when in a successive approximation state: the lower plate of the weight capacitor is connected to a reference voltage by the second switch array. Input signals are sampled by using a unified to sampling switch, which solves the problem in the traditional technology that sampling moments are mismatched due to different sampling signals in each time-interleaved channel.
    Type: Application
    Filed: January 7, 2020
    Publication date: August 4, 2022
    Applicants: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, CHONGQING GIGACHIP TECHNOLOGY CO. LTD.
    Inventors: DAIGUO XU, HEQUAN JIANG, RUZHANG LI, JIANAN WANG, GUANGBING CHEN, YUXIN WANG, DONGBING FU, LIANG LI, YAN WANG
  • Publication number: 20220228928
    Abstract: A digital temperature sensor circuit is disclosed. The digital temperature sensor circuit includes a proportional to the absolute temperature (PTAT) current source, generating a PTAT current proportional to absolute temperature; a sigma-delta modulation module, including an integrator, an analog-to-digital conversion unit, and a feedback digital-to-analog conversion unit; the integrator converts the PTAT current into temperature voltage; the analog-to-digital conversion unit compares the temperature voltage with a band gap reference voltage to generate a digital modulation signal with a duty ratio proportional to the temperature; the feedback digital-to-analog conversion unit adjusts the voltage input by the analog-to-digital conversion unit and controls the charging and discharging speed of the integrator; a digital filter, quantizing the digital modulation signal into a digital signal, and outputting the digital signal.
    Type: Application
    Filed: September 11, 2017
    Publication date: July 21, 2022
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Rongbin HU, Jian'an WANG, Dongbing FU, Guangbing CHEN, Zhengping ZHANG, Hequan JIANG, Gangyi HU
  • Publication number: 20210391870
    Abstract: The present disclosure belongs to the technical field of analog or digital-analog hybrid integrated circuits, and relates to a high-speed SAR_ADC digital logic circuit, in particular to a high-speed digital logic circuit for SAR_ADC and a sampling adjustment method. The digital logic circuit includes a comparator, a logic control unit parallel to the comparator, and a capacitor array DAC. The comparator and the logic control unit are simultaneously triggered by a clock signal. The comparator outputs a valid comparison result Dp/Dn, the logic control unit outputs a corresponding rising edge signal, the rising edge signal is slightly later than Dp/Dn output by the comparator through setting a delay match, Dp/Dn is captured by the corresponding rising edge signal, thereby settling a capacitor array. The present disclosure eliminates the disadvantage of the improper settling of the capacitor array of the traditional parallel digital logic.
    Type: Application
    Filed: January 7, 2020
    Publication date: December 16, 2021
    Applicants: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION, Chongqing GigaChip Technology Co., Ltd.
    Inventors: Daiguo XU, Hequan JIANG, Xueliang XU, Jian'an WANG, Guangbing CHEN, Dongbing FU, Yuxin WANG, Xiaoquan YU, Shiliu XU, Tao LIU
  • Patent number: 10778092
    Abstract: The present disclosure provides a negative voltage generating circuit having an automatic voltage adjustment function, including a negative voltage generating circuit and a feedback control module. The negative voltage generated by the negative voltage generating circuit is adjusted by the feedback control module. The negative voltage generating circuit having the automatic voltage adjustment function of the present disclosure can automatically adjust the charge current of the charge pump according to the load current, thereby realizing the stability of the output voltage, such that the traditional analog circuit structure can work normally under the extremely low power supply voltage, and is particularly suitable for the deep submicron process. The present disclosure also realizes the digital adjustment of the output voltage, the negative voltage output is no longer single, and can be adjusted according to actual needs.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: September 15, 2020
    Assignee: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Rongbin Hu, Yonglu Wang, Zhengping Zhang, Jian'an Wang, Guangbing Chen, Dongbing Fu, Yuxin Wang, Hequan Jiang, Gangyi Hu
  • Patent number: 10735018
    Abstract: Disclosed is a successive approximation algorithm-based ADC self-correcting circuit, comprising: a coding circuit, a voltage dividing resistor string, a comparator array, a multi-path selection switch, a first digital-to-analog converter, a reference circuit, a control register, and a data register; an input end of the coding circuit is connected to an output end of the comparator array; a positive-phase input end of each comparator in the comparator array is connected to a mobile end of the multi-path selection switch; a negative-phase input end of each comparator in the comparator array is correspondingly connected between each two neighboring resistors in the voltage dividing resistor string; an enabling end of the comparator array is connected to the control register; a first immobile end of the multi-path selection switch is used for receiving an analog signal, a second immobile send is connected to an output end of the first digital-to-analog converter, and a control end is connected to the control regi
    Type: Grant
    Filed: June 21, 2017
    Date of Patent: August 4, 2020
    Assignee: CHINA ELECTRONIC TECHNOLOGY CORPORATION, 24TH RESEARCH INSTITUTE
    Inventors: Rongbin Hu, Yonglu Wang, Zhengping Zhang, Jian'an Wang, Guangbing Chen, Dongbing Fu, Yuxin Wang, Hequan Jiang, Gangyi Hu
  • Publication number: 20200195270
    Abstract: Disclosed is a successive approximation algorithm-based ADC self-correcting circuit, comprising: a coding circuit, a voltage dividing resistor string, a comparator array, a multi-path selection switch, a first digital-to-analog converter, a reference circuit, a control register, and a data register; an input end of the coding circuit is connected to an output end of the comparator array; a positive-phase input end of each comparator in the comparator array is connected to a mobile end of the multi-path selection switch; a negative-phase input end of each comparator in the comparator array is correspondingly connected between each two neighboring resistors in the voltage dividing resistor string; an enabling end of the comparator array is connected to the control register; a first immobile end of the multi-path selection switch is used for receiving an analog signal, a second immobile send is connected to an output end of the first digital-to-analog converter, and a control end is connected to the control regi
    Type: Application
    Filed: June 21, 2017
    Publication date: June 18, 2020
    Inventors: RONGBIN HU, YONGLU WANG, ZHENGPING ZHANG, JIAN'AN WANG, GUANGBING CHEN, DONGBING FU, YUXIN WANG, HEQUAN JIANG, GANGYI HU
  • Publication number: 20200127559
    Abstract: The present disclosure provides a negative voltage generating circuit having an automatic voltage adjustment function, including a negative voltage generating circuit and a feedback control module. The negative voltage generated by the negative voltage generating circuit is adjusted by the feedback control module. The negative voltage generating circuit having the automatic voltage adjustment function of the present disclosure can automatically adjust the charge current of the charge pump according to the load current, thereby realizing the stability of the output voltage, such that the traditional analog circuit structure can work normally under the extremely low power supply voltage, and is particularly suitable for the deep submicron process. The present disclosure also realizes the digital adjustment of the output voltage, the negative voltage output is no longer single, and can be adjusted according to actual needs.
    Type: Application
    Filed: September 11, 2017
    Publication date: April 23, 2020
    Applicant: NO.24 RESEARCH INSTITUTE OF CHINA ELECTRONICS TECHNOLOGY GROUP CORPORATION
    Inventors: Rongbin HU, Yonglu WANG, Zhengping ZHANG, Jian'an WANG, Guangbing CHEN, Dongbing FU, Yuxin WANG, Hequan JIANG, Gangyi HU
  • Patent number: 10003352
    Abstract: The present invention provides a high-precision analog-to-digital converter, includes a redundant weight capacitor array, a comparator, a code reestablishment circuit, a weight storage circuit and a control logic circuit. The redundant weight capacitor array collects input voltages and generates output voltages in a sampling stage. The comparator compares the output voltages of the redundant weight capacitor array. The code reestablishment circuit calculates an output code of the successive approximation type analog-to-digital converter according to the comparator output result and a capacitor weight in the weight storage circuit. The weight storage circuit stores the capacitor weight. The control logic circuit controls the sampling and conversion stages of the redundant weight capacitor array. The present invention also provides a DNL-based performance improvement method adapted to the analog-to-digital converter.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: June 19, 2018
    Assignee: CHINA ELECTRONIC TECHNOLOGY CORPORATION, 24TH RESEARCH INSTITUTE
    Inventors: Ting Li, Gangyi Hu, Hequan Jiang, Ruzhang Li, Zhengbo Huang, Yong Zhang, Guangbing Chen, Yuxin Wang, Dongbing Fu
  • Publication number: 20180076824
    Abstract: The present invention provides a high-precision analog-to-digital converter, includes a redundant weight capacitor array, a comparator, a code reestablishment circuit, a weight storage circuit and a control logic circuit. The redundant weight capacitor array collects input voltages and generates output voltages in a sampling stage. The comparator compares the output voltages of the redundant weight capacitor array. The code reestablishment circuit calculates an output code of the successive approximation type analog-to-digital converter according to the comparator output result and a capacitor weight in the weight storage circuit. The weight storage circuit stores the capacitor weight. The control logic circuit controls the sampling and conversion stages of the redundant weight capacitor array. The present invention also provides a DNL-based performance improvement method adapted to the analog-to-digital converter.
    Type: Application
    Filed: June 8, 2015
    Publication date: March 15, 2018
    Inventors: TING LI, GANGYI HU, HEQUAN JIANG, RUZHANG LI, ZHENGBO HUANG, YONG ZHANG, GUANGBING CHEN, YUXIN WANG, DONGBING FU