Patents by Inventor Herbert Buschbeck
Herbert Buschbeck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230077872Abstract: The present invention involves a programmable or static multiwavelength LED lighting fixture that is capable of emitting wavelengths of light both for visual perception and other key physiological processes. The lighting fixture produces emitted spectra, wherein one portion of the emitted spectra serves visual perception and at least one portion of the emitted spectra is selected from the group consisting of 290-315 nm; 360-400 nm; 470-490 nm; and 600-1400 nm.Type: ApplicationFiled: February 15, 2021Publication date: March 16, 2023Applicant: University of CincinnatiInventors: Elke Buschbeck, Ilya Vilinsky, Herbert Buschbeck
-
Patent number: 8049189Abstract: A charged particle system comprises a particle source for generating a beam of charged particles and a particle-optical projection system. The particle-optical projection system comprises a focusing first magnetic lens (403) comprising an outer pole piece (411) having a radial inner end (411?), and an inner pole piece (412) having a lowermost end (412?) disposed closest to the radial inner end of the outer pole piece, a gap being formed by those; a focusing electrostatic lens (450) having at least a first electrode (451) and a second electrode (450) disposed in a region of the gap; and a controller (C) configured to control a focusing power of the first electrostatic lens based on a signal indicative of a distance of a surface of a substrate from a portion of the first magnetic lens disposed closest to the substrate.Type: GrantFiled: October 20, 2006Date of Patent: November 1, 2011Assignee: Carl Zeiss SMS GmbHInventors: Herbert Buschbeck, Elmar Platzgummer, Gerhard Stengl, Herbert Vonach
-
Patent number: 7772574Abstract: In a pattern-lock system of particle-beam apparatus wherein the imaging of the pattern is done by means of at least two consecutive projector stages of the projecting system, reference marks are imaged upon registering means to determine the position of the particle-beam, at the location of an intermediary image of the reference marks produced by a non-final projector stage, with the registering means being positioned at locations of nominal positions of an intermediary imaging plane. Furthermore, to produce a scanning movement over the registering means the reference beamlets are shifted laterally by means of deflector means provided in the pattern defining means in dependence of a time-dependent electric voltage.Type: GrantFiled: November 15, 2005Date of Patent: August 10, 2010Assignee: IMS Nanofabrication AGInventors: Gerhard Stengl, Herbert Buschbeck, Robert Nowak
-
Publication number: 20090146082Abstract: In a pattern-lock system of particle-beam apparatus wherein the imaging of the pattern is done by means of at least two consecutive projector stages of the projecting system, reference marks are imaged upon registering means to determine the position of the particle-beam, at the location of an intermediary image of the reference marks produced by a non-final projector stage, with the registering means being positioned at locations of nominal positions of an intermediary imaging plane. Furthermore, to produce a scanning movement over the registering means the reference beamlets are shifted laterally by means of deflector means provided in the pattern defining means in dependence of a time-dependent electric voltage.Type: ApplicationFiled: November 15, 2005Publication date: June 11, 2009Applicant: IMS NANOFABRICATION AGInventors: Gerhard Stengl, Herbert Buschbeck, Robert Nowak
-
Patent number: 7436120Abstract: For compensation of a magnetic field in an operating region a number of magnetic field sensors (S1, S2) and an arrangement of compensation coils (Hh) surrounding said operating region is used. The magnetic field is measured by at least two sensors (S1, S2) located at different positions outside the operating region, preferably at opposing positions with respect to a symmetry axis of the operating region, generating respective sensor signals (s1, s2), the sensor signals of said sensors are superposed to a feedback signal (ms, fs), which is converted by a controlling means to a driving signal (d1), and the driving signal is used to steer at least one compensation coil (Hh). To further enhance the compensation, the driving signal is also used to derive an additional input signal (cs) for the superposing step to generate the feedback signal (fs).Type: GrantFiled: March 2, 2005Date of Patent: October 14, 2008Assignee: IMS Nanofabrication GmbHInventors: Herbert Buschbeck, Gerhard Stengl
-
Publication number: 20080210887Abstract: A charged particle system comprises a particle source for generating a beam of charged particles and a particle-optical projection system. The particle-optical projection system comprises a focusing first magnetic lens (403) comprising an outer pole piece (411) having a radial inner end (411?), and an inner pole piece (412) having a lowermost end (412?) disposed closest to the radial inner end of the outer pole piece, a gap being formed by those; a focusing electrostatic lens (450) having at least a first electrode (451) and a second electrode (450) disposed in a region of the gap; and a controller (C) configured to control a focusing power of the first electrostatic lens based on a signal indicative of a distance of a surface of a substrate from a portion of the first magnetic lens disposed closest to the substrate.Type: ApplicationFiled: October 20, 2006Publication date: September 4, 2008Applicant: CARL ZEISS SMS GMBHInventors: Herbert Buschbeck, Elmar Platzgummer, Gerhard Stengl, Herbert Vonach
-
Patent number: 7388217Abstract: In a particle-optical projection system a pattern is imaged onto a target by means of energetic electrically charged particles. The pattern is represented in a patterned beam of said charged particles emerging from the object plane through at least one cross-over; it is imaged into an image with a given size and distortion. To compensate for the Z-deviation of the image position from the actual positioning of the target (Z denotes an axial coordinate substantially parallel to the optical axis), without changing the size of the image, the system includes a position detector for measuring the Z-position of several locations of the target, and a controller for calculating modifications of selected lens parameters of the final particle-optical lens and controlling said lens parameters according to said modifications.Type: GrantFiled: January 31, 2007Date of Patent: June 17, 2008Assignee: IMS Nanofabrication GmbHInventors: Herbert Buschbeck, Gertraud Lammer, Alfred Chalupka, Robert Nowak, Elmar Platzgummer, Gerhard Stengl
-
Publication number: 20070125956Abstract: In a particle-optical projection system a pattern is imaged onto a target by means of energetic electrically charged particles. The pattern is represented in a patterned beam of said charged particles emerging from the object plane through at least one cross-over; it is imaged into an image with a given size and distortion. To compensate for the Z-deviation of the image position from the actual positioning of the target (Z denotes an axial coordinate substantially parallel to the optical axis), without changing the size of the image, the system includes a position detector for measuring the Z-position of several locations of the target, and a controller for calculating modifications of selected lens parameters of the final particle-optical lens and controlling said lens parameters according to said modifications.Type: ApplicationFiled: January 31, 2007Publication date: June 7, 2007Inventors: Herbert Buschbeck, Gertraud Lammer, Alfred Chalupka, Robert Nowak, Elmar Platzgummer, Gerhard Stengl
-
Patent number: 7199373Abstract: In a charged-particle beam exposure device, an electrostatic lens (ML) comprises several (at least three) electrodes with rotational symmetry (EFR, EM, EFN) surrounding a particle beam path; the electrodes are arranged coaxially on a common optical axis representing the center of said particle beam path and are fed different electrostatic potentials through electric supplies. At least a subset of the electrodes (EM) form an electrode column realized as a series of electrodes of substantially equal shape arranged in consecutive order along the optical axis, wherein outer portions of said electrodes (EM) of the electrode column have outer portions (OR) of corresponding opposing surfaces (f1, f2) facing toward the next and previous electrodes, respectively. Preferably, the length of the electrode column is at least 4.1 times (3 times) the inner radius (ri1) of said surfaces (f1, f2).Type: GrantFiled: September 27, 2004Date of Patent: April 3, 2007Assignee: IMS Nanofabrication GmbHInventors: Gerhard Stengl, Herbert Buschbeck, Gertraud Lammer
-
Publication number: 20050201246Abstract: In a particle-optical projection system (32) a pattern (B) is imaged onto a target (tp) by means of energetic electrically charged particles. The pattern is represented in a patterned beam (pb) of said charged particles emerging from the object plane through at least one cross-over (c); it is imaged into an image (S) with a given size and distortion. To compensate for the Z-deviation of the image (S) position from the actual positioning of the target (tp) (Z denotes an axial coordinate substantially parallel to the optical axis cx), without changing the size of the image (S), the system comprises a position detection means (ZD) for measuring the Z-position of several locations of the target (tp), a control means (33) for calculating modifications (cr) of selected lens parameters of the final particle-optical lens (L2) and controlling said lens parameters according to said modifications.Type: ApplicationFiled: March 15, 2005Publication date: September 15, 2005Applicant: IMS Nanofabrication GmbHInventors: Herbert Buschbeck, Gertraud Lammer, Alfred Chalupka, Robert Nowak, Elmar Platzgummer, Gerhard Stengl
-
Publication number: 20050195551Abstract: For compensation of a magnetic field in an operating region a number of magnetic field sensors (S1, S2) and an arrangement of compensation coils (Hh) surrounding said operating region is used. The magnetic field is measured by at least two sensors (S1, S2) located at different positions outside the operating region, preferably at opposing positions with respect to a symmetry axis of the operating region, generating respective sensor signals (s1, s2), the sensor signals of said sensors are superposed to a feedback signal (ms, fs), which is converted by a controlling means to a driving signal (d1), and the driving signal is used to steer at least one compensation coil (Hh). To further enhance the compensation, the driving signal is also used to derive an additional input signal (cs) for the superposing step to generate the feedback signal (fs).Type: ApplicationFiled: March 2, 2005Publication date: September 8, 2005Applicant: IMS Nanofabrication GmbHInventors: Herbert Buschbeck, Gerhard Stengl
-
Publication number: 20050072933Abstract: In a charged-particle beam exposure device, an electrostatic lens (ML) comprises several (at least three) electrodes with rotational symmetry (EFR, EM, EFN) surrounding a particle beam path; the electrodes are arranged coaxially on a common optical axis representing the center of said particle beam path and are fed different electrostatic potentials through electric supplies. At least a subset of the electrodes (EM) form an electrode column realized as a series of electrodes of substantially equal shape arranged in consecutive order along the optical axis, wherein outer portions of said electrodes (EM) of the electrode column have outer portions (OR) of corresponding opposing surfaces (f1, f2) facing toward the next and previous electrodes, respectively. Preferably, the length of the electrode column is at least 4.1 times (3 times) the inner radius (ri1) of said surfaces (f1, f2).Type: ApplicationFiled: September 27, 2004Publication date: April 7, 2005Inventors: Gerhard Stengl, Herbert Buschbeck, Gertraud Lammer
-
Patent number: 6768125Abstract: A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures.Type: GrantFiled: January 8, 2003Date of Patent: July 27, 2004Assignee: IMS Nanofabrication, GmbHInventors: Elmar Platzgummer, Hans Loeschner, Gerhard Stengl, Herbert Vonach, Alfred Chalupka, Gertraud Lammer, Herbert Buschbeck, Robert Nowak, Till Windischbauer
-
Publication number: 20030155534Abstract: A device (102) for defining a pattern, for use in a particle-beam exposure apparatus (100), said device adapted to be irradiated with a beam (lb,pb) of electrically charged particles and let pass the beam only through a plurality of apertures, comprises an aperture array means (203) and a blanking means (202). The aperture array means (203) has a plurality of apertures (21,230) of identical shape defining the shape of beamlets (bm). The blanking means (202) serves to switch off the passage of selected beamlets; it has a plurality of openings (220), each corresponding to a respective aperture (230) of the aperture array means (203) and being provided with a deflection means (221) controllable to deflect particles radiated through the opening off their path (p1) to an absorbing surface within said exposure apparatus (100). The apertures (21) are arranged on the blanking and aperture array means (202,203) within a pattern definition field (pf) being composed of a plurality of staggered lines (p1) of apertures.Type: ApplicationFiled: January 8, 2003Publication date: August 21, 2003Inventors: Elmar Platzgummer, Hans Loeschner, Gerhard Stengl, Herbert Vonach, Alfred Chalupka, Gertraud Lammer, Herbert Buschbeck, Robert Nowak, Till Windischbauer
-
Patent number: 6326632Abstract: In a particle-optical imaging lithography system, an illuminating system comprising a particle source and a first electrostatic lens arrangement produces a particle beam which penetrates a mask foil provided with an orifice structure positioned in the particle beam path. This structure is imaged on a substrate plane by a projection system comprising a second electrostatic lens arrangement. The first and second lens arrangements each comprise, on their respective sides facing the mask holding device, at least one pre- and post-mask electrode, respectively. By applying different electrostatic potentials to the pre- and post-mask electrodes and to the mask foil, the mask foil and the pre-mask electrode form a grid lens with negative refracting power, and the mask foil and the post-mask electrode also form a grid lens with negative refracting power.Type: GrantFiled: October 13, 1999Date of Patent: December 4, 2001Assignee: IMS-Ionen Mikrofabrikations Systeme GmbHInventors: Herbert Buschbeck, Alfred Chalupka, Gertraud Lammer, Hans Loeschner, Gerhard Stengl
-
Publication number: 20010036588Abstract: A particle beam lithography method for imaging a structure pattern onto one or more fields on a substrate (11) by means of electrically charged particles, e.g. ions, in which a particle beam is shaped into a desired beam pattern by means of a mask positioned in the particle beam, converted into a beam pattern by apertures in the mask and projected onto the substrate to form an image of the mask apertures. According to the invention, a plurality of masks is positioned on one mask carrier, thus offering a plurality of aperture patterns which are used for producing structure patterns to be imaged onto respective areas (S) of the substrate. The patterns thus imaged, as a whole, combine together to form e.g. the total pattern of a die-field (D) of the substrate (11).Type: ApplicationFiled: February 2, 2001Publication date: November 1, 2001Applicant: IMS-Ionen Mikrofabrikations Systeme GmbHInventors: Herbert Buschbeck, Alfred Chalupka, Ernst Haugeneder, Gertraud Lammer, Hans Loschner
-
Patent number: 5874739Abstract: An arrangement for shadow-casting lithography by focusing electrically charged particles for the purpose of imaging structures of a mask on a substrate disposed immediately to the rear thereof, comprising a particle source (2) and an extraction system (3) which produces a divergent particle beam issuing from a substantially point-shaped virtual source, and comprising a lens (6) for focusing the divergent particle beam which comprises an electrode arrangement (6a, 6b, 6c, 6d, 6e, 6f, 6g, 6h) which includes at least one electrostatic collector lens (6a to 6f in conjunction with an electrostatic diverging lens (6g, 6h) in order to be able to compensate lens errors of the collector lens in a purposeful manner with respect to lens errors of the diverging lens and to render possible a predeterminable change in the imaging scale.Type: GrantFiled: August 18, 1997Date of Patent: February 23, 1999Assignee: Ims-Ionen Mikrofabrikations Systems BMGHInventors: Herbert Buschbeck, Alfred Chalupka, Hans Loeschner, Gerhard Stengl, Herbert Vonach