Patents by Inventor Herbert F. Schaake

Herbert F. Schaake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5959299
    Abstract: This is a sensor for, and a method of, determining if a particular type of flame is present, using at least two uncooled HgCdTe detector films on a common IR transmissive substrate. Specific examples of the types of radiation which can be identified include gasoline flames, natural gas flames, and organic combustion flames (identified, e.g., by comparing the amount of combined carbon dioxide and carbon monoxide to the amount of water vapor). The ratio of carbon dioxide to carbon monoxide can also be determined. The sensor can include a first HgCdTe filter (88) on a common IR transmissive substrate (42), a first uncooled HgCdTe detector film (86) over the first filter (88), and a second uncooled HgCdTe detector film (92) on a CdTe insulator which is either on the first uncooled HgCdTe detector film, or on a second HgCdTe filter (94) provided on the common IR transmissive substrate.
    Type: Grant
    Filed: April 1, 1997
    Date of Patent: September 28, 1999
    Assignee: Raytheon Company
    Inventors: Carlos A. Castro, Malcolm J. Bevan, Sebastian R. Borrello, Kent R. Carson, Luigi Colombo, Herbert F. Schaake, Donald F. Weirauch
  • Patent number: 4960728
    Abstract: Films of Hg.sub.1-x Cd.sub.x Te grown at low temperatures by MBE or MOCVD are homogenized by annealing at about 350.degree. C. for 1.25 to 3 hours.
    Type: Grant
    Filed: October 11, 1988
    Date of Patent: October 2, 1990
    Assignee: Texas Instruments Incorporated
    Inventors: Herbert F. Schaake, Roland J. Koestner
  • Patent number: 4507160
    Abstract: The disclosure relates to a method for reducing impurity concentration in mercury cadmium telluride alloys wherein impurities are attracted to a region saturated with second phase tellurium during annealing in a saturated mercury atmosphere where the second phase tellurium and the impurities attracted thereto can be removed by polishing, etching, grinding, or the like.
    Type: Grant
    Filed: December 23, 1983
    Date of Patent: March 26, 1985
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey D. Beck, Herbert F. Schaake, John H. Tregilgas, Michael A. Kinch
  • Patent number: 4504334
    Abstract: The disclosure relates to a method for removing the unwanted impurities from an HgCdTe alloy which consists of the steps of depositing a thin film on the order of from about 1 to about 100 microns in thickness of tellurium onto the backside of a mercury cadmium telluride bar to insure the presence of a substantial amount of excess tellurium on the backside of the alloy bar and allow the gettering mechanism to work. A protective film to shield the tellurium film from mercury ambient atmosphere is then optionally placed over the tellurium film. The protective film can be formed of a silicon oxide such as SiO and is preferably in the range of about 1000 angstroms to 10 microns or more in thickness. The bar with the tellurium and protective film thereon is then annealed at a temperature of less than 450.degree. C., preferably about 280.degree. C.
    Type: Grant
    Filed: December 23, 1983
    Date of Patent: March 12, 1985
    Assignee: Texas Instruments Incorporated
    Inventors: Herbert F. Schaake, John H. Tregilgas, Jeffrey D. Beck
  • Patent number: 4501625
    Abstract: The disclosure relates to a method for making extrinsically doped HgCdTe alloys containing Cu, Ag, or Au or other dopant impurity whereby the excess tellurium in the core is annihilated (stoichiometrically compensated by excess in-diffusing Hg) and the dopant impurities are then permitted to randomly move through the slab to provide for homogeneity thereof. A post-annealing step of much greater than normal temperature-time length than was provided in the prior art is used. A standard post-annealing step in a saturated mercury vapor atomosphere leaves second phase tellurium (and gettered impurities) at the center of the slab, and longer term post-annealing negates this situation by annihilating the second phase tellurium in the slab and thus permitting the impurities to randomly travel by solid state diffusion throughout the slab to ultimately be distributed therein in a homogeneous manner.
    Type: Grant
    Filed: December 23, 1983
    Date of Patent: February 26, 1985
    Assignee: Texas Instruments Incorporated
    Inventors: John H. Tregilgas, Jeffrey D. Beck, Michael A. Kinch, Herbert F. Schaake
  • Patent number: 4481044
    Abstract: The dislocation density near the surface of Hg.sub.1-x Cd.sub.x Te alloys is substantially reduced by annealing the material at around 600.degree. C. in a mercury saturated ambient for periods of four hours or more, prior to post annealing at lower temperatures to control the metal vacancy concentration. This procedure allows dislocation reduction by climb, reduces the concentration of metal vacancies which can collapse to form dislocation loops or contribute to dislocation multiplication, and reduces tellurium precipitates which contribute to dislocation multiplication during subsequent post annealing.
    Type: Grant
    Filed: March 21, 1984
    Date of Patent: November 6, 1984
    Assignee: Texas Instruments Incorporated
    Inventors: Herbert F. Schaake, John H. Tregilgas