Patents by Inventor Herbert H. Hum

Herbert H. Hum has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12197357
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: January 14, 2025
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 12189550
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: July 5, 2023
    Date of Patent: January 7, 2025
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20240012772
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11741030
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 25, 2020
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11513957
    Abstract: Methods and apparatus implementing Hardware/Software co-optimization to improve performance and energy for inter-VM communication for NFVs and other producer-consumer workloads. The apparatus include multi-core processors with multi-level cache hierarchies including and L1 and L2 cache for each core and a shared last-level cache (LLC). One or more machine-level instructions are provided for proactively demoting cachelines from lower cache levels to higher cache levels, including demoting cachelines from L1/L2 caches to an LLC. Techniques are also provided for implementing hardware/software co-optimization in multi-socket NUMA architecture system, wherein cachelines may be selectively demoted and pushed to an LLC in a remote socket. In addition, techniques are disclosure for implementing early snooping in multi-socket systems to reduce latency when accessing cachelines on remote sockets.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: November 29, 2022
    Assignee: Intel Corporation
    Inventors: Ren Wang, Andrew J. Herdrich, Yen-cheng Liu, Herbert H. Hum, Jong Soo Park, Christopher J. Hughes, Namakkal N. Venkatesan, Adrian C. Moga, Aamer Jaleel, Zeshan A. Chishti, Mesut A. Ergin, Jr-shian Tsai, Alexander W. Min, Tsung-yuan C. Tai, Christian Maciocco, Rajesh Sankaran
  • Publication number: 20220114122
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 20, 2021
    Publication date: April 14, 2022
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 11269793
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: July 23, 2020
    Date of Patent: March 8, 2022
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20210117350
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Application
    Filed: December 25, 2020
    Publication date: April 22, 2021
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Publication number: 20210004328
    Abstract: Methods and apparatus implementing Hardware/Software co-optimization to improve performance and energy for inter-VM communication for NFVs and other producer-consumer workloads. The apparatus include multi-core processors with multi-level cache hierarchies including and L1 and L2 cache for each core and a shared last-level cache (LLC). One or more machine-level instructions are provided for proactively demoting cachelines from lower cache levels to higher cache levels, including demoting cachelines from L1/L2 caches to an LLC. Techniques are also provided for implementing hardware/software co-optimization in multi-socket NUMA architecture system, wherein cachelines may be selectively demoted and pushed to an LLC in a remote socket. In addition, techniques are disclosure for implementing early snooping in multi-socket systems to reduce latency when accessing cachelines on remote sockets.
    Type: Application
    Filed: September 21, 2020
    Publication date: January 7, 2021
    Inventors: Ren Wang, Andrew J. Herdrich, Yen-cheng Liu, Herbert H. Hum, Jong Soo Park, Christopher J. Hughes, Namakkal N. Venkatesan, Adrian C. Moga, Aamer Jaleel, Zeshan A. Chishti, Mesut A. Ergin, Jr-shian Tsai, Alexander W. Min, Tsung-yuan C. Tai, Christian Maciocco, Rajesh Sankaran
  • Publication number: 20200356502
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: July 23, 2020
    Publication date: November 12, 2020
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 10817425
    Abstract: Methods and apparatus implementing Hardware/Software co-optimization to improve performance and energy for inter-VM communication for NFVs and other producer-consumer workloads. The apparatus include multi-core processors with multi-level cache hierarchies including and L1 and L2 cache for each core and a shared last-level cache (LLC). One or more machine-level instructions are provided for proactively demoting cachelines from lower cache levels to higher cache levels, including demoting cachelines from L1/L2 caches to an LLC. Techniques are also provided for implementing hardware/software co-optimization in multi-socket NUMA architecture system, wherein cachelines may be selectively demoted and pushed to an LLC in a remote socket. In addition, techniques are disclosure for implementing early snooping in multi-socket systems to reduce latency when accessing cachelines on remote sockets.
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Ren Wang, Andrew J. Herdrich, Yen-cheng Liu, Herbert H. Hum, Jong Soo Park, Christopher J. Hughes, Namakkal N. Venkatesan, Adrian C. Moga, Aamer Jaleel, Zeshan A. Chishti, Mesut A. Ergin, Jr-shian Tsai, Alexander W. Min, Tsung-yuan C. Tai, Christian Maciocco, Rajesh Sankaran
  • Patent number: 10725920
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Grant
    Filed: April 8, 2018
    Date of Patent: July 28, 2020
    Assignee: Intel Corporation
    Inventors: Herbert H. Hum, Brinda Ganesh, James R. Vash, Ganesh Kumar, Leena K. Puthiyedath, Scott J. Erlanger, Eric J. Dehaemer, Adrian C. Moga, Michelle M. Sebot, Richard L. Carlson, David Bubien, Eric Delano
  • Patent number: 10725919
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Grant
    Filed: April 8, 2018
    Date of Patent: July 28, 2020
    Assignee: Intel Corporation
    Inventors: Herbert H. Hum, Brinda Ganesh, James R. Vash, Ganesh Kumar, Leena K. Puthiyedath, Scott J. Erlanger, Eric J. Dehaemer, Adrian C. Moga, Michelle M. Sebot, Richard L. Carlson, David Bubien, Eric Delano
  • Patent number: 10705960
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Grant
    Filed: April 8, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventors: Herbert H. Hum, Brinda Ganesh, James R. Vash, Ganesh Kumar, Leena K. Puthiyedath, Scott J. Erlanger, Eric J. Dehaemer, Adrian C. Moga, Michelle M. Sebot, Richard L. Carlson, David Bubien, Eric DeLano
  • Publication number: 20190391939
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration.
    Type: Application
    Filed: February 25, 2019
    Publication date: December 26, 2019
    Applicant: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 10248591
    Abstract: A physical layer (PHY) is coupled to a serial, differential link that is to include a number of lanes. The PHY includes a transmitter and a receiver to be coupled to each lane of the number of lanes. The transmitter coupled to each lane is configured to embed a clock with data to be transmitted over the lane, and the PHY periodically issues a blocking link state (BLS) request to cause an agent to enter a BLS to hold off link layer flit transmission for a duration. The PHY utilizes the serial, differential link during the duration for a PHY associated task selected from a group including an in-band reset, an entry into low power state, and an entry into partial width state.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: April 2, 2019
    Assignee: Intel Corporation
    Inventors: Robert J. Safranek, Robert G. Blankenship, Venkatraman Iyer, Jeff Willey, Robert H. Beers, Darren S. Jue, Arvind A. Kumar, Debendra Das Sharma, Jeffrey C. Swanson, Bahaa Fahim, Vedaraman Geetha, Aaron T. Spink, Fulvio Spagna, Rahul R. Shah, Sitaraman V. Iyer, William Harry Nale, Abhishek Das, Simon P. Johnson, Yuvraj S. Dhillon, Yen-Cheng Liu, Raj K. Ramanujan, Robert A. Maddox, Herbert H. Hum, Ashish Gupta
  • Patent number: 10073779
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: September 11, 2018
    Assignee: Intel Corporation
    Inventors: Herbert H. Hum, Brinda Ganesh, James R. Vash, Ganesh Kumar, Leena K. Puthiyedath, Scott J. Erlanger, Eric J. Dehaemer, Adrian C. Moga, Michelle M. Sebot, Richard L. Carlson, David Bubien, Eric Delano
  • Publication number: 20180225213
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Application
    Filed: April 8, 2018
    Publication date: August 9, 2018
    Inventors: Herbert H. HUM, Brinda GANESH, James R. VASH, Ganesh KUMAR, Leena K. PUTHIYEDATH, Scott J. ERLANGER, Eric J. DEHAEMER, Adrian C. MOGA, Michelle M. SEBOT, Richard L. CARLSON, David BUBIEN, Eric DELANO
  • Publication number: 20180225211
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Application
    Filed: April 8, 2018
    Publication date: August 9, 2018
    Inventors: Herbert H. HUM, Brinda GANESH, James R. VASH, Ganesh KUMAR, Leena K. PUTHIYEDATH, Scott J. ERLANGER, Eric J. DEHAEMER, Adrian C. MOGA, Michelle M. SEBOT, Richard L. CARLSON, David Bubien, Eric Delano
  • Publication number: 20180225212
    Abstract: A processor of an aspect includes a plurality of logical processors each having one or more corresponding lower level caches. A shared higher level cache is shared by the plurality of logical processors. The shared higher level cache includes a distributed cache slice for each of the logical processors. The processor includes logic to direct an access that misses in one or more lower level caches of a corresponding logical processor to a subset of the distributed cache slices in a virtual cluster that corresponds to the logical processor. Other processors, methods, and systems are also disclosed.
    Type: Application
    Filed: April 8, 2018
    Publication date: August 9, 2018
    Inventors: Herbert H. HUM, Brinda GANESH, James R. VASH, Ganesh KUMAR, Leena K. PUTHIYEDATH, Scott J. ERLANGER, Eric J. DEHAEMER, Adrian C. MOGA, Michelle M. SEBOT, Richard L. CARLSON, David BUBIEN, Eric DELANO