Patents by Inventor Herbert Kroemer

Herbert Kroemer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8396337
    Abstract: By introducing magneto-optical garnets with high Faraday rotation and low optical loss in a ring resonator, a nonreciprocal phase shift is generated to split the resonance wavelengths of clockwise and counter-clockwise modes under magnetic field. There are three main applications based on this nonreciprocal effect, optical isolators, optical circulators, and tunable optical filters. The concept of the tunable filters and the design of optical isolators for TE and TM modes are described in the paper. With proper optical ring isolator configurations, optical circulators can be realized.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: March 12, 2013
    Assignee: The Regents of the University of California
    Inventors: Herbert Kroemer, John E. Bowers, Ming-Chun Tien
  • Publication number: 20120002914
    Abstract: By introducing magneto-optical garnets with high Faraday rotation and low optical loss in a ring resonator, a nonreciprocal phase shift is generated to split the resonance wavelengths of clockwise and counter-clockwise modes under magnetic field. There are three main applications based on this nonreciprocal effect, optical isolators, optical circulators, and tunable optical filters. The concept of the tunable filters and the design of optical isolators for TE and TM modes are described in the paper. With proper optical ring isolator configurations, optical circulators can be realized.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Herbert Kroemer, John E. Bowers, Ming-Chun Tien
  • Patent number: 5067828
    Abstract: An optical modulator having a waveguide region comprising first and second layers of material having differing effective masses for free charge carriers at a predefined band edge energy disposed immediately adjacent to each other and covered by a lower refractive index cladding. A preferred embodiment employs a semiconductor system such as Al.sub.y Ga.sub.1-y As for the first and second material layers with the value of y adjusted between the layers so that the conduction band edge energies of the direct band in one layer is about the same as that of the indirect condition band in the other layer. A mechanism is provided for moving charge carriers between the first and second layers, such as metal contacts and a power source for applying electrical fields to the waveguide structure in a desired modulation pattern. The material layers may be deposited as a series of quantum wells with limited disordering or a ridge structure used to obtain lateral confinement.
    Type: Grant
    Filed: August 9, 1990
    Date of Patent: November 26, 1991
    Assignee: Rockwell International Corporation
    Inventors: Gerard J. Sullivan, Kenneth D. Pedrotti, Herbert Kroemer
  • Patent number: 5013683
    Abstract: A method for growing a superlattice structure on a substrate. First, a periodic array of monoatomic surface steps are created on the surface of the substrate at an area to have the superlattice structure grown thereon. There is apparatus for creating a beam of a material being input thereto and for selectively including or not including respective ones of a plurality of materials within the beam. The beam is directed at the steps of the substrate. Finally, logic causes control apparatus to include and not include respective ones of the materials within the beam in a pre-established pattern of time periods which will cause the materials to be deposited on the steps in a series of stacked monolayers. Tilted Superlattices (TSLs) and Coherent Tilted Superlattices (CTSLs) are created. The method can create pseudo ternary semiconductor alloys as part of a CTSL by employing at least two binary compound semiconductor alloys in the deposition process.
    Type: Grant
    Filed: January 23, 1989
    Date of Patent: May 7, 1991
    Assignee: The Regents of the University of California
    Inventors: Pierre M. Petroff, Herbert Kroemer