Patents by Inventor Herbert Vollert

Herbert Vollert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9592809
    Abstract: The invention relates to a hybrid brake system having a hydraulic service brake system and an electromechanical service brake system. According to the invention, a brake booster is designed as a pedal simulator, which can be used to boost power and to generate a pedal power which is counter to the direction of actuation. When the hydraulic service brake system fails, the electromechanical service brake system is used for braking and the brake booster generates a pedal power which allows or facilitates dosage of the brake actuation.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: March 14, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Reinhard Weiberle
  • Patent number: 9573575
    Abstract: A method for operating a brake booster of a vehicle includes: establishing an actual displacement speed signal of an input rod, to which a driver brake force is at least partially transmitted; filtering high-frequency and/or low-frequency signal components out of the established actual displacement speed signal; establishing a setpoint displacement speed signal of at least one booster piston, which is displaceable with the aid of the brake booster, at least in consideration of a predefined characteristic curve and the filtered actual displacement speed signal; and establishing an activation signal of the brake booster at least in consideration of the established setpoint displacement speed signal and outputting the activation signal to the brake booster to displace at least the booster piston at an execution speed corresponding to the activation signal.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: February 21, 2017
    Assignee: ROBERT BOSCH GmbH
    Inventors: Manfred Gerdes, Herbert Vollert
  • Publication number: 20160200306
    Abstract: A method for controlling a brake booster in a hydraulic brake system, in which the smallest partial pressure target value of at least three partial pressure target values is ascertained, and is then defined as the target pressure value and is then set using a brake booster.
    Type: Application
    Filed: July 24, 2014
    Publication date: July 14, 2016
    Inventors: Michael Butz, Manfred Gerdes, Patrick Christian Schaefer, Herbert Vollert
  • Patent number: 9302657
    Abstract: A method for operating a motor vehicle hydraulic braking system having at least one electric motor-operated braking pressure generator. The output power of the electric motor-operated braking pressure generator is restricted during normal driving/braking situations and the restriction is temporarily deactivated upon identification of a critical driving situation, such as an overstressing of the brake system to include brake fade.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 5, 2016
    Assignees: Ford Global Technologies, LLC, Robert Bosch GmbH
    Inventors: Rudolf Daniels, Ian Moore, Thomas Svensson, Joerg Riethmueller, Herbert Vollert, Timo Jahnz
  • Publication number: 20160082938
    Abstract: A braking device and a braking system are provided, each having a master brake cylinder having at least one first pressure chamber that is subdivided or is able to be subdivided at least into a first partial volume and a second partial volume, which are hydraulically connectable or connected to a brake fluid reservoir, a first brake circuit being hydraulically connectable or connected to the first partial volume, and having a valve device that is mechanically designed in such a way that a pressure buildup up to a mechanically specified limit pressure may be brought about in the second partial volume, brake fluid being transferable at least into the first brake circuit via at least one subcomponent of the valve device, and an exceeding of the limit pressure in the second partial volume being prevented.
    Type: Application
    Filed: February 27, 2014
    Publication date: March 24, 2016
    Inventors: Herbert VOLLERT, Oliver LEIBFRIED, Stefan STRENGERT, SR., Urs BAUER, Volkmar SCHLOTTER, Michael KUNZ, Matthias KISTNER, Karl-Heinz WILLMANN, Matthias SCHANZENBACH, Suekrue SENOL, Dagobert MASUR
  • Publication number: 20150360666
    Abstract: An electromechanical brake booster is provided for a braking system of a vehicle, having a valve body and an input rod, the valve body, to which at a displacement motion in a brake application direction has been imparted, being displaceable up to a differential travel equal to a limit differential travel with reference to the input rod, and then a co-displacement motion in the brake application direction being impartable to the input rod if the co-displacement motion is acted against at most by a retention force below a predefined threshold value, and at least one buffer element being disposed on the input rod and/or on the valve body in such a way that if a retention force above the predefined threshold value acts against the co-displacement motion, the differential travel is increasable above the limit differential travel by way of a deformation of the at least one buffer element.
    Type: Application
    Filed: June 17, 2015
    Publication date: December 17, 2015
    Inventors: Manfred GERDES, Herbert VOLLERT
  • Patent number: 9156450
    Abstract: A method and control device for operating a brake-boosted hydraulic brake system of a vehicle, including ascertaining information relating to an increase or a decrease in an additional braking force exerted on at least one wheel in addition to a hydraulic braking force of the brake system, which increase or decrease is greater than a predefined minimum difference, altering an assistance force to a force introduction element, by a force difference, taking account of the ascertained information, so that the hydraulic braking force is altered to correspond to the increase or decrease in the additional braking force, and displacing a volume of a brake medium of the brake system between at least one accumulator chamber of at least one plunger and/or of at least one two-chamber cylinder and a volume of the brake system outside the accumulator.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: October 13, 2015
    Assignee: ROBERT BOSCH GMBH
    Inventors: Herbert Vollert, Frank Kneip
  • Patent number: 9139186
    Abstract: An electromechanical brake booster is disclosed. The brake booster is constructed with two worm gears which run in opposite directions and whose axial forces compensate one another. The worm gears drive toothed rack gears which convert a rotational driving movement into a translatory output movement for activating a master brake cylinder. As a result of the provision of two gear paths, the loading of each gear path is halved and an application of force to a booster body, which forms a gear output, is symmetrical.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: September 22, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Remy Garnier, Reinhard Weiberle, Timo Jahnz, Jens Kolarsky, Stephan Hoenle
  • Publication number: 20150197230
    Abstract: A method for operating a regenerative braking system of a vehicle includes: applying control to at least one valve of a brake circuit, before and/or during operation of a generator of the braking system, so that brake fluid is displaced out of a brake master cylinder and/or out of the at least one brake circuit into at least one reservoir volume; defining a target force difference variable regarding a booster force exerted by a brake booster in consideration of at least one of a generator braking torque information item, a brake master cylinder pressure variable, and an evaluation variable derived from at least the generator braking torque information item or the brake master cylinder pressure variable; and controlling the brake booster in consideration of the defined target force difference variable.
    Type: Application
    Filed: May 3, 2013
    Publication date: July 16, 2015
    Inventors: Jens Kolarsky, Michael Kunz, Stefan Strengert, Herbert Vollert
  • Publication number: 20150115700
    Abstract: A brake assembly includes a hydraulic auxiliary-power-operated first brake system including a master brake cylinder operably connected to an electromechanical brake booster and a hydraulic wheel brake for at least one wheel, the master brake cylinder configured to be activated by muscle force, and an externally powered second brake system including a hydraulic pressure source operated by external power and operably connected to a hydraulic wheel brake for at least one other wheel. The brake assembly further includes an electric drive motor configured for operation as a generator to brake the motor vehicle by acting on the at least one other wheel and a control unit configured to reduce a braking effect of the first brake system by reducing boosting of the electromechanical brake booster, if a braking effect of the electric drive motor in a generator mode is greater than the determined braking effect of the second brake system.
    Type: Application
    Filed: December 29, 2014
    Publication date: April 30, 2015
    Inventors: Herbert Vollert, Reinhard Weiberle, Michael Kunz, Jens Kolarsky
  • Publication number: 20150046053
    Abstract: A method for operating a brake booster of a vehicle includes: establishing an actual displacement speed signal of an input rod, to which a driver brake force is at least partially transmitted; filtering high-frequency and/or low-frequency signal components out of the established actual displacement speed signal; establishing a setpoint displacement speed signal of at least one booster piston, which is displaceable with the aid of the brake booster, at least in consideration of a predefined characteristic curve and the filtered actual displacement speed signal; and establishing an activation signal of the brake booster at least in consideration of the established setpoint displacement speed signal and outputting the activation signal to the brake booster to displace at least the booster piston at an execution speed corresponding to the activation signal.
    Type: Application
    Filed: January 17, 2013
    Publication date: February 12, 2015
    Applicant: ROBERT BOSCH GmbH
    Inventors: Michael Gerdes, Herbert Vollert
  • Publication number: 20140375114
    Abstract: A method for operating a motor vehicle hydraulic braking system having at least one electric motor-operated braking pressure generator. The output power of the electric motor-operated braking pressure generator is restricted during normal driving/braking situations and the restriction is temporarily deactivated upon identification of a critical driving situation, such as an overstressing of the brake system to include brake fade.
    Type: Application
    Filed: December 21, 2012
    Publication date: December 25, 2014
    Inventors: Rudolf Daniels, Ian Moore, Thomas Svensson, Joerg Riethmüller, Herbert Vollert, Timo Jahnz
  • Patent number: 8886430
    Abstract: The invention relates to a method for operating a brake-boosted brake system of a vehicle, comprising the following steps: determining braking force information (28) with respect to a driver braking force (Ff), which is applied to the actuating element (10) when an actuating element (10) of the brake system is actuated by a driver of the vehicle; determining an actual speed parameter (34) with respect to an adjustment speed of a servo piston (16) of the brake system to which a servo power (Fu) of a brake booster (14) of the brake system is applied; determining a relative speed parameter (40) with respect to a relative speed of the servo piston (16) relative to the input piston (12); establishing a target speed parameter (50) with respect to the adjustment speed of the servo piston (16) taking into account the determined braking force information (28), the determined actual speed parameter (34) and the determined relative speed parameter (40), and actuating the brake booster (14) taking the established target
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: November 11, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Frank Kneip, Dirk Mahnkopf
  • Patent number: 8875848
    Abstract: In a method for displacing and storing brake fluid for a hydraulic brake system of a vehicle which brake system has at least one hydraulic accumulator, at least one brake booster and at least one brake circuit, the brake booster is configured in such a manner, that even without an action of the driver, actuation of the brake booster allows a volume of brake fluid to be automatically displaced. The brake fluid is displaced into the hydraulic accumulator and stored, by automatic actuation of the brake booster, and at least a portion of the stored brake fluid is emptied by the hydraulic accumulator into the brake circuit as a function of the operating state of the brake system.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: November 4, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Reinhard Weiberle
  • Patent number: 8870300
    Abstract: A method for actuating a hydraulic vehicle brake system, includes a master brake cylinder with a preferably electromechanical brake booster and a wheel slip control device. The master brake cylinder is actuated simultaneously with the brake booster, and hydraulic pumps of the wheel slip control device are driven by an electric motor. Pressure builds more quickly in the wheel brakes of the vehicle brake system for safety and assistance functions that require high pressure build-up dynamic. The method also increases the wheel brake pressure using the pressure that can be generated by actuating the master brake cylinder with the brake booster.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: October 28, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Remy Garnier, Reinhard Weiberle, Timo Jahnz, Volker Mehl, Frank Kneip, Dirk Mahnkopf, Jens Kolarsky, Stephan Hoenle
  • Patent number: 8840198
    Abstract: A method for operating a hydraulic vehicle braking system that has an anti-lock control unit is disclosed. The system includes a brake master cylinder having an electromechanical brake booster. As the pressure level of the vehicle braking system decreases during an anti-lock control, in which all vehicle wheels are controlled, the boosting force of the brake booster is reduced in an anti-lock control of this type.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: September 23, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Reinhard Weiberle, Timo Jahnz, Volker Mehl, Jens Kolarsky, Stephan Hoenle, Frank Kneip
  • Patent number: 8827053
    Abstract: The present invention relates to a self-amplifying electromechanical partial lining disc brake, having a ramp mechanism as a self-amplification device. According to the invention, a rack for driving a friction brake pad is situated between roller elements of the ramp mechanism, particularly at a geometrical centroid of an imaginary surface defined by the roller elements. As a result a load is distributed to the roller elements in a more uniform fashion and the pressing force of the friction brake pad against a brake disc when the partial lining disc brake is actuated is distributed more uniformly and counteracts irregular pad wear.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: September 9, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Chi-Thuan Cao, Dietmar Baumann, Dirk Hofmann, Herbert Vollert, Willi Nagel, Andreas Henke, Bertram Foitzik, Bernd Goetzelmann, Hans Frick
  • Patent number: 8783792
    Abstract: The invention relates to an electromechanical brake booster with an electric motor and a helical gearing. The brake booster is used for coupling an auxiliary force via a driver into a piston rod. The invention proposes connecting a spindle of the helical gearing elastically via a spring element to the piston rod such that, in the event of rapid actuation of the brake, the helical gearing and a rotor of the electric motor do not have to be accelerated entirely muscle power. The muscle power required for actuating a brake is reduced as a result in the event of a rapid actuation of the brake.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 22, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Jochen Mayer
  • Patent number: 8768591
    Abstract: The invention relates to a method for operating a brake boosted brake system of a vehicle, comprising the monitoring of a mode of operation of the brake boosted brake system with regard to agreement of a total braking torque applied to at least one wheel of the vehicle by the brake boosted brake system with a specified target total braking torque and/or with regard to a displacement of a brake medium volume of the brake boosted brake system to a force/pressure conversion element (22) of the brake boosted brake system, if a braking torque difference between the applied total braking torque and the specified target total braking torque is greater than a specified reference difference, and/or if the brake medium volume displaced to the force/pressure conversion element (22) is larger than a specified reference volume; further comprising the defining of a target boosting force change with regard to a boosting force (Fu) provided by a brake booster (14) of the brake boosted brake system, taking into account the br
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: July 1, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Frank Kneip, Dirk Mahnkopf
  • Patent number: 8631694
    Abstract: A connecting element connects a brake pedal to a brake force amplifier of a vehicle brake system. A helical compression spring as a first spring element and a rubbery-elastic reaction disk as a second spring element are disposed between a pedal rod and a piston rod of the connecting element, the spring elements being installed in series due to the arrangement thereof. Due to the higher spring rate of the reaction disk preferably increasing with load, the connecting element has a progressive spring characteristic line. As soon as the pedal rod contacts the reaction disk the helical compression spring and the reaction disk act in parallel and serially such that the progression of the total spring characteristic line further increases.
    Type: Grant
    Filed: June 19, 2009
    Date of Patent: January 21, 2014
    Assignee: Robert Bosch GmbH
    Inventors: Herbert Vollert, Armin Verhagen, Jochen Mayer