Patents by Inventor Hergen Kapels

Hergen Kapels has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6556418
    Abstract: A micromechanical component placed on a substrate face includes at least one cell. A counter-electrode of a cell capacitor is placed under a cavity. The counter-electrode can be made from a first part of a lower conductive layer. An optionally circular membrane used as an electrode of the capacitor is placed above the cavity. The membrane is homogeneous, has a substantially uniform thickness, and can be part of an upper conductive layer preferably supported by a second part of the lower conductive layer. A caustic channel used to remove the sacrificial coating in order to form the cavity is laterally connected thereto. The channel has a vertical dimension equal to the vertical dimension of the cavity. A closure is adjacent to the channel and disposed outside the membrane. The component can be used as a pressure sensor, and can have several cells each adjacent to six other cells. A process for fabricating a micromechanical component is also provided.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: April 29, 2003
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Hergen Kapels, Klaus-Günter Oppermann
  • Patent number: 6406933
    Abstract: Etching openings are provided in a membrane above an etched-out cavity, only at a distance of at most one tenth of the diameter of the member away from the edge of the cavity. For production, a poly layer is applied to a sacrificial layer composed of SiO2 and is provided with rows of etching holes, through which channels are etched out in the sacrificial layer. The poly layer is oxidized and is made smooth by means of a planarization layer. Etching holes are produced in the edge region of the membrane layer. The sacrificial layer is removed over the entire area of the cavity which is to be produced, with the etching medium propagating sufficiently quickly through the channels.
    Type: Grant
    Filed: November 8, 2000
    Date of Patent: June 18, 2002
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Klaus-Günter Oppermann, Hergen Kapels
  • Patent number: 6401544
    Abstract: A method is disclosed for producing a micromechanical component. The micromechanical component has sensor holes, wherein at least one component protective layer and/or a spacer coating is applied on the component before separating the wafer into chips. The component protective layer sealingly covers at least the walls of the holes extending parallel to the surface of the wafer and perpendicular to the surface of the wafer and the spacer coating sealingly covers at least the walls of the holes extending parallel to the surface of the wafer.
    Type: Grant
    Filed: February 27, 2001
    Date of Patent: June 11, 2002
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Christofer Hierold, Hergen Kapels, Stefan Kolb, Dieter Maier-Schneider, Klaus-Günter Oppermann, Hans-Jörg Timme, Thomas Scheiter, Wolfgang Werner
  • Patent number: 6346429
    Abstract: An integrated sensor is fabricated by etching recesses or depressions into the top side of a semiconductor body and by fabricating sensor components in the recesses or depressions. The sensor components are lowered in the recesses or depressions by approximately half of their height. Electronic components are fabricated in the remaining regions of the top side of the semiconductor body. The remaining regions may be covered with a protective layer if the recesses or depressions are fabricated after the electronic components.
    Type: Grant
    Filed: August 28, 2000
    Date of Patent: February 12, 2002
    Assignee: Infineon Technologies AG
    Inventors: Robert Aigner, Hergen Kapels, Andreas Meckes, Klaus-Günter Oppermann
  • Publication number: 20010054315
    Abstract: A method is disclosed for producing a micromechanical component. The micromechanical component has sensor holes, wherein at least one component protective layer and/or a spacer coating is applied on the component before separating the wafer into chips. The component protective layer sealingly covers at least the walls of the holes extending parallel to the surface of the wafer and perpendicular to the surface of the wafer and the spacer coating sealingly covers at least the walls of the holes extending parallel to the surface of the wafer.
    Type: Application
    Filed: February 27, 2001
    Publication date: December 27, 2001
    Inventors: Robert Aigner, Christofer Hierold, Hergen Kapels, Stefan Kolb, Dieter Maier-Schneider, Klaus-Gunter Oppermann, Hans-Jorg Timme, Thomas Scheiter, Wolfgang Werner
  • Publication number: 20010021538
    Abstract: A micromechanical component placed on a substrate face includes at least one cell. A counter-electrode of a cell capacitor is placed under a cavity. The counter-electrode can be made from a first part of a lower conductive layer. An optionally circular membrane used as an electrode of the capacitor is placed above the cavity. The membrane is homogeneous, has a substantially uniform thickness, and can be part of an upper conductive layer preferably supported by a second part of the lower conductive layer. A caustic channel used to remove the sacrificial coating in order to form the cavity is laterally connected thereto. The channel has a vertical dimension equal to the vertical dimension of the cavity. A closure is adjacent to the channel and disposed outside the membrane. The component can be used as a pressure sensor, and can have several cells each adjacent to six other cells. A process for fabricating a micromechanical component is also provided.
    Type: Application
    Filed: February 28, 2001
    Publication date: September 13, 2001
    Inventors: Robert Aigner, Hergen Kapels, Klaus-Gunter Oppermann
  • Publication number: 20010013773
    Abstract: A method of determining an intactness of a configuration having a plurality of sensor groups, includes the steps of forming, for all of the sensor groups, associated test signals by summing up electric signals of all respective other ones of the sensor groups. All the test signals are compared with one another; and it is selectively determined that an intactness exists, if the test signals are all substantially equal to one another, and it is determined that the intactness does not exist if the test signals are not substantially equal to one another. The configuration is provided such that each sensor group can be disconnected so as to exclude its signal from the aggregate signal. The configuration is preferably provided in a CMOS circuit on a single semiconductor chip.
    Type: Application
    Filed: January 16, 2001
    Publication date: August 16, 2001
    Inventors: Robert Aigner, Klaus-Gunter Oppermann, Hergen Kapels
  • Patent number: 6094985
    Abstract: Rotation rate sensor as a micromechanical component in silicon, in which a ring with a rigid strut along a diameter is so suspended at elastic braces and anchoring arrangements on a substrate as to be able to perform rotation oscillations about its center axis and to be able to be tilted about the strut under the influence of outer torques. There are electrodes present at the ring and at the substrate, at which electrodes electrical voltages can be applied such that rotary oscillations of the ring about its center axis can be excited and rotary oscillations about the strut can be detected. To stabilize the position of the ring in the neutral position, additional electrodes can be provided at the ring and at the substrate for the generation of electrostatic forces.
    Type: Grant
    Filed: May 24, 1999
    Date of Patent: August 1, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Hergen Kapels, Christofer Hierold, Max Steger, Thomas Scheiter, Reinhold Noe, Ulrich Naher