Patents by Inventor Herman Batelaan

Herman Batelaan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220242036
    Abstract: A method of forming a monolithic electron optics component includes providing a dual-nozzle printing head having first and second printing nozzles, heating the dual-nozzle printing head to a desired temperature so that both the first nozzle and the second nozzle are heated to substantially the same, desired temperature, extruding a non-conductive filament material through the first nozzle, and withdrawing a conductive filament material through the second nozzle to form a device component. The desired temperature is typically above a melting temperature of the conductive filament material, above the melting temperature of the non-conducting filament material and lower than the temperature at which the printed device component or object sags under its own weight after printing and bleeding of the non-conducting filament material over the conducting filament material occurs.
    Type: Application
    Filed: April 20, 2022
    Publication date: August 4, 2022
    Inventors: Herman Batelaan, Phillip Wiebe
  • Patent number: 11011337
    Abstract: Systems and methods for obtaining fast, spin-polarized electrons from an edge or tip or cusp of a target material, e.g., a sharp GaAs crystal edge or tip, or a cusp, which naturally incorporates optical reversibility. A source of fast spin-polarized electrons may include a target material including a sharp tip or tip portion or a sharp edge or a cusp, the tip or tip portion including at least two intersecting edges, and a pulsed light source configured to emit one or more light pulses focused on the sharp tip or tip portion or the sharp edge or the cusp to thereby induce emission of spin-polarized electrons from the sharp tip or tip portion or the sharp edge or the cusp of the target material.
    Type: Grant
    Filed: November 19, 2019
    Date of Patent: May 18, 2021
    Assignee: NUtech Ventures
    Inventors: Timothy J. Gay, Herman Batelaan, Evan Brunkow, Eric Jones
  • Publication number: 20200161072
    Abstract: Systems and methods for obtaining fast, spin-polarized electrons from an edge or tip or cusp of a target material, e.g., a sharp GaAs crystal edge or tip, or a cusp, which naturally incorporates optical reversibility. A source of fast spin-polarized electrons may include a target material including a sharp tip or tip portion or a sharp edge or a cusp, the tip or tip portion including at least two intersecting edges, and a pulsed light source configured to emit one or more light pulses focused on the sharp tip or tip portion or the sharp edge or the cusp to thereby induce emission of spin-polarized electrons from the sharp tip or tip portion or the sharp edge or the cusp of the target material.
    Type: Application
    Filed: November 19, 2019
    Publication date: May 21, 2020
    Inventors: Timothy J. Gay, Herman Batelaan, Evan Brunkow, Eric Jones
  • Publication number: 20190270241
    Abstract: A method of forming a monolithic electron optics component includes providing a dual-nozzle printing head having first and second printing nozzles, heating the dual-nozzle printing head to a desired temperature so that both the first nozzle and the second nozzle are heated to substantially the same, desired temperature, extruding a non-conductive filament material through the first nozzle, and withdrawing a conductive filament material through the second nozzle to form a device component. The desired temperature is typically above a melting temperature of the conductive filament material, above the melting temperature of the non-conducting filament material and lower than the temperature at which the printed device component or object sags under its own weight after printing and bleeding of the non-conducting filament material over the conducting filament material occurs.
    Type: Application
    Filed: March 1, 2019
    Publication date: September 5, 2019
    Inventors: Herman Batelaan, Phillip Wiebe