Patents by Inventor Herman Stegehuis

Herman Stegehuis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10492736
    Abstract: A medical imaging system for providing X-ray image data of an object including at least one X-ray detector, an X-ray source arrangement, and a patient configured to receive an object for imaging a region of interest of the object. The at least one X-ray detector is movably mounted above the patient table; and the at least one X-ray detector and the X-ray source arrangement are movable independently. The X-ray source arrangement includes a physical trajectory support structure and is configured to provide X-ray radiation to the region of interest from a number of positions forming a concave open trajectory, wherein a portion of the trajectory and/or the physical trajectory support structure is located below the patient table; and wherein two end regions of the trajectory are extending on the two lateral sides of above the table.
    Type: Grant
    Filed: October 30, 2014
    Date of Patent: December 3, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Chrysi Papalazarou, Gereon Vogtmeier, Klaus Juergen Engel, Herman Stegehuis
  • Publication number: 20190243005
    Abstract: The invention relates to a combined imaging detector for detection of gamma and x-ray quanta comprising an x-ray detector (31) for generating x-ray detection signals in response to detected x-ray quanta and a gamma detector (32) for generating gamma detection signals in response to detected gamma quanta. The x-ray detector (31) and the gamma detector (32) are arranged in a stacked configuration along a radiation-receiving direction (33). The gamma detector (32) comprises a gamma collimator plate (320) comprising a plurality of pinholes (321), and a gamma conversion layer (322, 324) for converting detected gamma quanta into gamma detection signals.
    Type: Application
    Filed: September 6, 2017
    Publication date: August 8, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Herfried Karl WIECZOREK, Johannes Wilhelmus Maria JACOBS, Herman STEGEHUIS, Alessandro RADAELLI, Christiaan KOK, Peter Lex ALVING
  • Patent number: 10371830
    Abstract: A radiation detector for combined detection of low-energy radiation quanta and high-energy radiation quanta has a multi-layered structure. A rear scintillator layer (5) is configured to emit a burst of scintillation photons responsive to a high-energy radiation quantum being absorbed by the rear scintillator layer (5). A rear photosensor layer (6) attached to a back side of the rear scintillator layer (5) is configured to detect scintillation photons generated in the rear scintillator layer (5). A front scintillator layer (3) arranged in front of the rear scintillator layer (5) opposite the rear photosensor layer (6) is configured to emit a burst of scintillation photons responsive to a low-energy radiation quantumbeing absorbed by the front scintillator layer (3). A front photosensor layer (2) attached to a front side of the front scintillator layer (3) opposite the rear scintillator layer (5) is configured to detect scintillation photons generated in the front scintillator layer (3).
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 6, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Johannes Wilhelmus Maria Jacobs, Jorrit Jorritsma, Heidrun Steinhauser, Onno Jan Wimmers, Peter Lex Alving, Herman Stegehuis, Herfried Karl Wieczorek
  • Publication number: 20190209107
    Abstract: An interventional X-ray system is proposed, the system including a multi X-ray source unit positioned below a patient table. This ‘multiblock’ may comprise several x-ray sources with focal spot positions distributed along the x-y (table) plane. The x-ray sources are operable in a switching scheme in which certain x-ray sources may be activated in parallel and also sequential switching between such groups is intended. The switching may be carried out so that several images with different projection angles can be acquired in parallel. In other words, an optimal multi-beam X-ray exposure is suggested, wherein fast switching in one dimension and simultaneous exposure in the 2nd dimension is applied.
    Type: Application
    Filed: May 12, 2017
    Publication date: July 11, 2019
    Inventors: Gereon VOGTMEIER, Klaus Juergen ENGEL, Michael GRASS, Bernd MENSER, Heidrun STEINHAUSER, Alberto FAZZI, Herman STEGEHUIS, Dirk SCHAEFER
  • Publication number: 20190142353
    Abstract: A radiation system (50), comprising a patient support platform (3). An X-ray radiation source (2a, 2b, 2c) is positioned beneath the patient support platform and enclosed by fixed radiation shielding. An X-ray radiation detector (22) is positioned above the patient support platform. A detector X-ray radiation shield (1, 11) comprising shield extension (7) is arranged on either side of the patient support platform, which extend from the X-ray radiation 5 detector to the fixed radiation shielding. The shield extensions are able to be moved relative to the source radiation shield to allow access to a patient on the support platform.
    Type: Application
    Filed: July 5, 2017
    Publication date: May 16, 2019
    Inventors: Herman STEGEHUIS, Heidrun STEINHAUSER
  • Publication number: 20190056517
    Abstract: The present invention relates to an apparatus for imaging an object. It is described to receive (110) by at least a portion of first pixels of a first area (A, A1, A2, A3, A4, A5, A6, A7, A8) of an X-ray detector (20) first radiation emitted by at least one X-ray source (30). The X-ray detector is configured such that X-ray radiation received by a pixel leads to the generation of signal in that pixel. A plurality of first signals representative of corresponding signals on the plurality of first pixels are stored (120) in at least one first plurality of storage nodes associated with the first area. Second radiation emitted by the at least one X-ray source (30) is received (150) by at least a portion of second pixels of a second area (B, B1, B2, B3, B4, B5, B6, B7, B8; C) of the X-ray detector. A plurality of second signals representative of corresponding signals on the plurality of second pixels are stored (190) in at least one second plurality of storage nodes associated with the second area.
    Type: Application
    Filed: February 21, 2017
    Publication date: February 21, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: PETER LEX ALVING, HEIDRUN STEINHAUSER, HERMAN STEGEHUIS
  • Publication number: 20190046137
    Abstract: The invention relates to the detection of x-ray and gamma quanta. In the medical imaging arrangement (100) an x-ray source (111) is attached to a first portion of an x-ray c-arm (113) and an x-ray detector (112) is attached to a second portion of the x-ray c-arm (113) for measuring x-ray transmission along a path (115) between the x-ray source and the x-ray detector. A gamma camera (114) is movable along a trajectory (116) that intersects the path between the x-ray source and the x-ray detector. Since the gamma camera can be moved along a trajectory that intersects the path between the x-ray source and the x-ray detector, the gamma camera can be used to generate a nuclear image that closely corresponds to the same region of interest as that which is imaged by the x-ray source and detector.
    Type: Application
    Filed: February 16, 2017
    Publication date: February 14, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Herfried Karl WIECZOREK, Andreas GOEDICKE, Herman STEGEHUIS, Johannes Wilhelmus Maria JACOBS
  • Publication number: 20180275289
    Abstract: A radiation detector for combined detection of low-energy radiation quanta and high-energy radiation quanta, the radiation detector (8) having a multi-layered structure, comprising: a rear scintillator layer (5) configured to emit a burst of scintillation photons responsive to a high-energy radiation quantum being absorbed by the rear scintillator layer (5); a rear photosensor layer (6) attached to a back side of the rear scintillator layer (5), said rear photosensor layer (6) configured to detect scintillation photons generated in the rear scintillator layer (5); a front scintillator layer (3) arranged in front of the rear scintillator layer (5) opposite the rear photosensor layer (6), said front scintillator layer (3) configured to emit a burst of scintillation photons responsive to a low-energy radiation quantumbeing absorbed by the front scintillator layer (3); and a front photosensor layer (2) attached to a front side of the front scintillator layer (3) opposite the rear scintillator layer (5), said fron
    Type: Application
    Filed: October 14, 2016
    Publication date: September 27, 2018
    Inventors: Johannes Wilhelmus Maria JACOBS, Jorrit JORRITSMA, Heidrun STEINHAUSER, Onno Jan WIMMERS, Peter Lex ALVING, Herman STEGEHUIS, Herfried Karl WIECZOREK
  • Patent number: 9700209
    Abstract: A medical imaging device and a method for providing an image representation supporting positioning of an intervention device such as a wire tip (4) in a region of interest during an intervention is proposed. Therein, the following process steps are to be performed: (S1) acquiring a pre-live anatomy image (1) including a region of interest; (S2) acquiring a live anatomy image using a live image acquisition device comprising an adjustable collimator device; (S3) identifying a location (5) of the intervention device (4) within the live anatomy image; (S4) adjusting settings of the collimator device based on the identified location of the intervention device for subsequently acquiring a further live anatomy image representing the region of interest using the live image acquisition device with the collimator device being in the adjusted settings; and providing (S5) the image representation by merging information from the live anatomy image into the pre-live anatomy image.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: July 11, 2017
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Raoul Florent, Bart Pierre Antoine Jozef Hoornaert, Herman Stegehuis
  • Publication number: 20160249869
    Abstract: The present invention relates to providing X-ray image data of an object. In order to provide a medical X-ray imaging system with improved practicability, a medical X-ray imaging system (100) is provided, comprising at least one X-ray detector (110), an X-ray source arrangement (120), and a patient table (130). The patient table is configured to receive an object for imaging a region of interest (140) of the object. The at least one X-ray detector is movably mounted above the patient table; and the at least one X-ray detector and the X-ray source arrangement are movable independently. The X-ray source arrangement is configured to provide X-ray radiation to the region of interest from a number of positions (150) forming a concave open trajectory (160), wherein a middle portion (170) of the trajectory is located below the patient table; and wherein two end regions (180) of the trajectory are extending on the two lateral sides of the table and above the table.
    Type: Application
    Filed: October 30, 2014
    Publication date: September 1, 2016
    Inventors: CHRYSI PAPALAZAROU, GEREON VOGTMEIER, KLAUS JUERGEN ENGEL, HERMAN STEGEHUIS
  • Publication number: 20130343631
    Abstract: A medical imaging device and a method for providing an image representation supporting positioning of an intervention device such as a wire tip (4) in a region of interest during an intervention is proposed. Therein, the following process steps are to be performed: (S1) acquiring a pre-live anatomy image (1) including a region of interest; (S2) acquiring a live anatomy image using a live image acquisition device comprising an adjustable collimator device; (S3) identifying a location (5) of the intervention device (4) within the live anatomy image; (S4) adjusting settings of the collimator device based on the identified location of the intervention device for subsequently acquiring a further live anatomy image representing the region of interest using the live image acquisition device with the collimator device being in the adjusted settings; and providing (S5) the image representation by merging information from the live anatomy image into the pre-live anatomy image.
    Type: Application
    Filed: March 5, 2012
    Publication date: December 26, 2013
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Raoul Florent, Bart Pierre Antoine Jozef Hoornaert, Herman Stegehuis
  • Patent number: 8348507
    Abstract: An x-ray system (100) comprises a gantry (102) on which an x-ray source (104) and an x-ray detector (106) are mounted. A control unit (110) comprises means (114) for effectuating a wiggling motion of the gantry, wherein an axis (116) connecting the x-ray source and the x-ray detector traces a surface (128) of a cone (118). The x-ray source and the x-ray detector have a fixed position with respect to the axis. The control unit comprises means (120) for acquiring a series of x-ray images during the wiggling motion of the gantry. An object recognition unit (122) detects an object (124) appearing in the series of x-ray images to obtain a tracked path. A depth estimation unit (126) uses the tracked path for estimating a depth parameter indicative of a position of the object in a direction substantially parallel to the axis (116).
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: January 8, 2013
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Niels Nijhof, Herman Stegehuis
  • Patent number: 8000507
    Abstract: A medical viewing system for processing and displaying a sequence of medical angiograms representing a balloon, moving in an artery, this system comprising extracting means for automatically extracting balloon image data in a phase of balloon expansion, and computing means for automatically defining and storing coordinates of a Region of Interest (ROI) based on the expanded balloon image data, located around the expanded balloon; and display means for displaying the images. Contrast agent may be used as agent of balloon expansion. The system may have means to detect and keep track of balloon markers and means to look around those markers for further balloon image data extraction.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: August 16, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Peter Maria Johannes Rongen, Raoul Florent, Herman Stegehuis
  • Patent number: 7941000
    Abstract: An image of a physical object is produced by receiving a plurality of raw images, dividing the plurality of raw images into a first subset of primary images and a second subset of secondary images according to a predetermined criterion. From the first subset of primary images an intermediate image is determined while from the second subset of secondary images a mask image is determined. Afterwards a registration of the intermediate image and the mask image is performed by using direct registration of predetermined features present in the intermediate image and the mask image. A fused image of the physical object is generated out of the mask image and the intermediate image.
    Type: Grant
    Filed: May 11, 2007
    Date of Patent: May 10, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Peter Maria Johannes Rongen, Nicolaas Hylke Bakker, Herman Stegehuis, Peter Willem van den Houten, Raoul Florent
  • Publication number: 20110026666
    Abstract: An x-ray system (100) comprises a gantry (102) on which an x-ray source (104) and an x-ray detector (106) are mounted. A control unit (110) comprises means (114) for effectuating a wiggling motion of the gantry, wherein an axis (116) connecting the x-ray source and the x-ray detector traces a surface (128) of a cone (118). The x-ray source and the x-ray detector have a fixed position with respect to the axis. The control unit comprises means (120) for acquiring a series of x-ray images during the wiggling motion of the gantry. An object recognition unit (122) detects an object (124) appearing in the series of x-ray images to obtain a tracked path. A depth estimation unit (126) uses the tracked path for estimating a depth parameter indicative of a position of the object in a direction substantially parallel to the axis (116).
    Type: Application
    Filed: March 20, 2009
    Publication date: February 3, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Niels Nijhof, Herman Stegehuis
  • Patent number: 7864917
    Abstract: An imaging apparatus includes a multi-dimensional assembly supporting a plurality of x-ray sources that are individually addressable. The plurality of x-ray sources is further configurable to simultaneously emit x-ray spectra at different mean energies. Furthermore, the multi-dimensional assembly includes a plurality of x-ray detectors that are arranged to detect at least a part of the x-rays that are emitted from at least one of the x-ray sources.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: January 4, 2011
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Carolina Ribbing, Peter Klaus Bachmann, Matthijs Adriaansz, Han Kroon, Herman Stegehuis, Hans Nikol
  • Patent number: 7822241
    Abstract: Images of static vascular maps (B), which were taken at different phases of the cardiac cycle and/or the respiratory cycle and were archived in a memory (6), are superimposed on a current image (A) of a catheter (2, 8) in the vascular system (9). In the method, a defined section of a map image (B) around the estimated actual position of the catheter is selected and is displayed superimposed on the current image (A) on a monitor (10). The map image (B) used for this is preferably selected by an electrocardiogram to match the particular cardiac cycle. The position of the catheter relative to the map image (B) is estimated using a distance image (D).
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: October 26, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Kai Eck, Jörg Bredno, Paul Antoon Cyriel Desmedt, Peter Maria Johannes Rongen, Herman Stegehuis, Geert Gijsbers
  • Publication number: 20100074504
    Abstract: A method for acquiring fusion images of a periodically moving body organ and an apparatus adapted to implement such method is described. In a preferred embodiment of the method, X-rays are irradiated to the body organ and a multiplicity of mask images is acquired by X-ray detection at a high image acquisition rate of at least 60 frames per second. Then, contrast medium is injected into vessels of the body organ and subsequently at least one contrast image of the body organ with the contrast medium included in the vessels is acquired by X-ray detection. A matching image from the multiplicity of mask images is determined which has been acquired at substantially the same stage of the movement of the body organ as the contrast image. By calculating the difference between the matching mask image and the at least one contrast image a subtraction image of the body organ can be obtained and displayed.
    Type: Application
    Filed: March 14, 2008
    Publication date: March 25, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Antonius J.C. Bruijns, Ronaldus P.J. Hermans, Peter M.J. Rongen, Jarl J.P. Blijd, Herman Stegehuis, Joerg Bredno
  • Patent number: 7660381
    Abstract: Scatter compensation is achieved in an X-ray imaging system by providing collimation means in the form of shutters (12) to collimate the primary X-ray beam (1) such that the radiation (8) transmitted through a subject (4) to be imaged is incident substantially centrally on the active part (14) of an image detector (3), so as to define an active border (14b), in respect of which scatter levels can be measured. An electrical signal (104) representative of the scatter level is subtracted from the electrical signal (7) representative of the radiation (8) transmitted through the subject, to obtain a scatter-compensated image signal (106).
    Type: Grant
    Filed: November 17, 2005
    Date of Patent: February 9, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Johannes Henricus Maria Joosten, Miels Noordhoek, Herman Stegehuis
  • Publication number: 20090147911
    Abstract: Scatter compensation is achieved in an X-ray imaging system by providing collimation means in the form of shutters (12) to collimate the primary X-ray beam (1) such that the radiation (8) transmitted through a subject (4) to be imaged is incident substantially centrally on the active part (14) of an image detector (3), so as to define an active border (14b), in respect of which scatter levels can be measured. An electrical signal (104) representative of the scatter level is subtracted from the electrical signal (7) representative of the radiation (8) transmitted through the subject, to obtain a scatter-compensated image signal (106).
    Type: Application
    Filed: November 17, 2005
    Publication date: June 11, 2009
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS, N.V.
    Inventors: Johannes Henricus Maria Joosten, Niels Noordhoek, Herman Stegehuis