Patents by Inventor Hermann Seibold

Hermann Seibold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180091049
    Abstract: Methods and apparatus for operating a DC-to-DC voltage converter that has a power stage that includes at least one switching transistor. The output voltage of the DC-to-DC voltage converter is monitored. If the output voltage drops below a lower output voltage threshold, a series of drive pulses is provided to the at least one switching transistor to commence switching of the at least one switching transistor. If the output voltage rises above an upper output voltage threshold, a random number of additional drive pulses is provided to the at least one switching transistor and then the provision of drive pulses to the at least one switching transistor is ceased.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 29, 2018
    Inventors: Joerg Kirchner, Hermann Seibold, Ivo Huber
  • Patent number: 9929650
    Abstract: Methods and apparatus for operating a DC-to-DC voltage converter that has a power stage that includes at least one switching transistor. The output voltage of the DC-to-DC voltage converter is monitored. If the output voltage drops below a lower output voltage threshold, a series of drive pulses is provided to the at least one switching transistor to commence switching of the at least one switching transistor. If the output voltage rises above an upper output voltage threshold, a random number of additional drive pulses is provided to the at least one switching transistor and then the provision of drive pulses to the at least one switching transistor is ceased.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: March 27, 2018
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Joerg Kirchner, Hermann Seibold, Ivo Huber
  • Patent number: 8193841
    Abstract: An electronic device is provided that includes a power-on-reset (POR) circuit. The POR circuit includes a trigger stage configured to change an output if a first power supply voltage level exceeds a threshold voltage level and a first inverter and a second inverter being cross-coupled. An output of the second inverter is the POR output of the power-up reset circuit. The output is coupled to the trigger stage for switching the trigger stage off in response to a change of a signal at the output of the second inverter. The first inverter is dimensioned to follow with a voltage level at an output an initially rising slope of the first power supply voltage level and the second inverter is dimensioned to keep a voltage level at an output at a second power supply voltage level during the initially rising slope of the first power supply voltage level.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: June 5, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Puneet Sareen, Hermann Seibold
  • Publication number: 20110068838
    Abstract: An electronic device is provided that includes a power-on-reset (POR) circuit. The POR circuit includes a trigger stage configured to change an output if a first power supply voltage level exceeds a threshold voltage level and a first inverter and a second inverter being cross-coupled. An output of the second inverter is the POR output of the power-up reset circuit. The output is coupled to the trigger stage for switching the trigger stage off in response to a change of a signal at the output of the second inverter. The first inverter is dimensioned to follow with a voltage level at an output an initially rising slope of the first power supply voltage level and the second inverter is dimensioned to keep a voltage level at an output at a second power supply voltage level during the initially rising slope of the first power supply voltage level.
    Type: Application
    Filed: September 21, 2010
    Publication date: March 24, 2011
    Applicant: Texas Instruments Deutschland GmbH
    Inventors: Puneet Sareen, Hermann Seibold
  • Patent number: 7737791
    Abstract: In applications that use fractional-N phase locked loops (PLLs), the use of spread spectrum clocking (SSC) to reduced electromagnetic interference (EMI) would be desirable, but conflicts can occur. Here, a circuit is provided that includes both fractional logic circuitry and spread spectrum logic circuitry. This logic circuitry operates in combination with a phase selector to generally ensure that the likelihood of conflicts (which can occur in conventional circuit) are reduced.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: June 15, 2010
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Puneet Sareen, Hermann Seibold
  • Publication number: 20090066423
    Abstract: A combined spread spectrum and fractional-N phase locked loop circuit comprises a chain of a reference clock divider, a phase-frequency detector, a charge pump with loop filter, a voltage controlled oscillator that provides multiple phase outputs, and a feedback loop from the multiple phase outputs of the voltage controlled oscillator to a feedback input of the phase-frequency detector. The feedback loop includes a phase selector, a feedback divider and a control block with an output controlling said phase selector to select a particular phase as an input to the feedback divider. The control block includes spread spectrum logic circuitry receiving an input from the output of the phase selector and providing a directional control output signal and a phase step control signal. The control block further includes fractional logic circuitry receiving an input from the output of the phase selector and providing a phase step control signal.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 12, 2009
    Applicant: TEXAS INSTRUMENTS DEUTSCHLAND GMBH
    Inventors: Puneet Sareen, Hermann Seibold
  • Publication number: 20060159157
    Abstract: To generate a spread frequency spectrum clock signal in a digital approach permitting to make the key parameters independent of process, temperature and supply voltage variations, a digital phase locked loop is used. In a first step (a), a clock signal at a maximum clock frequency is generated. In a second step (b), the clock frequency is stepwise reduced by incrementally adding phase delay steps to the clock signal until a minimum clock frequency is reached. In a further step (c), the number of incrementally added phase delay steps is stepwise reduced until the maximum clock frequency is reached. Steps (a) to (c) are continuously repeated.
    Type: Application
    Filed: August 5, 2005
    Publication date: July 20, 2006
    Inventors: Hermann Seibold, Gerd Rombach
  • Patent number: 6590458
    Abstract: A clock generator including a PLL circuit serves to generate an output frequency cycled in a predefined range and containing a desired clock frequency. The PLL circuit contains a voltage-controlled oscillator (18), the oscillating frequency of which is adjustable by means of an analog control voltage to the desired clock frequency in a fixed relationship to a reference frequency applied to the PLL circuit. The clock generator contains a second voltage-controlled oscillator (22), the oscillating frequency of which can be cycled in the predefined range. The second oscillator (22) is configured so that its oscillating frequency can be varied by means of a digital incrementally variable control signal in the predefined range. By varying the output frequency of the clock generator a spreading of its output frequency spectrum is attainable, resulting in a reduction in high-frequency interference by the signal generated by the clock.
    Type: Grant
    Filed: October 3, 2001
    Date of Patent: July 8, 2003
    Assignee: Texas Instruments Incorporated
    Inventors: Gerd Rombach, Hermann Seibold
  • Patent number: 6556088
    Abstract: A phase-locked loop (PLL) has a phase detector coupled to an output of the PLL and to a reference signal and a low pass filter including a first and a second charge pump coupled to an output of the phase detector. A capacitor is coupled to an output of the first charge pump, a first bias circuit coupled to the capacitor, the first bias circuit having a differential output. A voltage controlled ring oscillator has a plurality of differential inventer stages, each having a first input coupled to a first output of the first bias circuit and a second input coupled to a second output of the first bias circuit. A second bias circuit is coupled between the capacitor and the first bias circuit, an output of the second bias circuit being coupled to an input of the first bias circuit and to an output of the second charge pump. The PLL circuit exhibits a stable damping factor with respect to frequency.
    Type: Grant
    Filed: October 12, 2000
    Date of Patent: April 29, 2003
    Assignee: Texas Instruments Deutschland, GmbH
    Inventors: Markus Dietl, Hermann Seibold
  • Publication number: 20030062956
    Abstract: A clock generator including a PLL circuit serves to generate an output frequency cycled in a predefined range and containing a desired clock frequency. The PLL circuit contains a voltage-controlled oscillator (18), the oscillating frequency of which is adjustable by means of an analog control voltage to the desired clock frequency in a fixed relationship to a reference frequency applied to the PLL circuit. The clock generator contains a second voltage-controlled oscillator (22), the oscillating frequency of which can be cycled in the predefined range. The second oscillator (22) is configured so that its oscillating frequency can be varied by means of a digital incrementally variable control signal in the predefined range. By varying the output frequency of the clock generator a spreading of its output frequency spectrum is attainable, resulting in a reduction in high-frequency interference by the signal generated by the clock.
    Type: Application
    Filed: October 3, 2001
    Publication date: April 3, 2003
    Inventors: Gerd Rombach, Hermann Seibold