Patents by Inventor Herve Collet

Herve Collet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974761
    Abstract: Described are surgical systems comprising a robotic device comprising a cutting tool, an actuation unit having at least two motorized rotational degrees of freedom about respective rotational axes that are substantially orthogonal to each other, and configured for adjusting a position and orientation of the cutting tool relative to each target plane, a planar mechanism connecting the last segment of the actuation unit to the cutting tool, a passive articulated lockable holding arm supporting the actuation unit, a tracking unit configured to determine in real time the pose of the cutting plane with respect to the coordinate system of the anatomical structure, a control unit configured to determine the pose of the cutting plane with respect to the target plane and to control the actuation unit to bring the cutting plane into alignment with the target plane.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: May 7, 2024
    Assignee: Orthotaxy S.A.S.
    Inventors: Stéphane Lavallee, Nicolas Demanget, Hervé Collet, Daniel Girardeau-Montaut, Laurence Chabanas, François Urvoy
  • Publication number: 20230172668
    Abstract: Systems, methods, and devices are disclosed for navigational arrays for attaching to surgical tools, the arrays comprising a frame comprising fiducials for detection by an optical navigation system, and a body having a first end for supporting the frame and a second end defining an opening, wherein the opening is aligned with a first axis of the surgical tool, wherein the opening engages a stationary surface adjacent to the surgical tool, and wherein the opening engages features disposed at predetermined even intervals on the stationary surface adapted to allow repositioning of the array from a first position to a second position, wherein the second position is at least one of a rotational offset or an axial offset from the first position. The stationary surface may be a step disposed on an adapter inserted into the surgical tool. The stationary surface may be a sheath covering a rotatable shaft inserted into the surgical tool. The stationary surface may be a sleeve disposed on the surgical tool.
    Type: Application
    Filed: December 3, 2021
    Publication date: June 8, 2023
    Inventors: Hervé Collet, Nicolas Demanget, Grégory Dez, Anthony Leandri, Arnaud Robert
  • Patent number: 11633233
    Abstract: The invention relates to a surgical system for cutting an anatomical structure (F, T) of a patient according to at least one target plane defined in a coordinate system of the anatomical structure, comprising: (i) a robotic device (100) comprising: —an end effector (2), —an actuation unit (4) having at least three motorized degrees of freedom, configured for adjusting a position and orientation of the end effector (2) relative to each target plane, —a passive planar mechanism (24) connecting the terminal part (40) of the actuation unit (4) to the end effector (2); (ii) a tracker (203) rigidly attached to the end effector (2), (iii) a tracking unit (200) configured to determine in real time the pose of the end effector (2) with respect to the coordinate system of the anatomical structure, a control unit (300) configured to determine the pose of the end effector with respect to the target plane and to control the actuation unit so as to bring the cutting plane into alignment with the target plane.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: April 25, 2023
    Assignee: Orthotaxy S.A.S.
    Inventors: Stéphane Lavallee, Daniel Girardeau-Montaut, Hervé Collet, Anthony Leandri, Nicolas Demanget
  • Patent number: 11607229
    Abstract: The invention relates to a surgical system for cutting an anatomical structure (F, T) of a patient according to at least one target plane defined in a coordinate system of the anatomical structure, comprising: i) a robotic device (100) comprising: —a cutting tool, —an actuation unit (4) comprising from three to five motorized degrees of freedom, said actuation unit comprising at least one portion having a parallel architecture comprising a base (40) and a platform (41) selectively orientable relative to the base (40) according to at least two of said motorized degrees of freedom, —a planar mechanism (24) connecting a terminal part of the actuation unit (4) to the cutting tool (2), ii) a passive articulated lockable holding arm (51) supporting the actuation unit, iii) a tracking unit (200) configured to determine in real time the pose of the cutting plane with respect to the coordinate system of the anatomical structure, iv) a control unit (300) configured to determine the pose of the cutting plane with respec
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: March 21, 2023
    Assignee: Orthotaxy S.A.S.
    Inventors: Stéphane Lavallee, Nicolas Demanget, Hervé Collet, Daniel Girardeau-Montaut, Laurence Chabanas
  • Publication number: 20220184824
    Abstract: Systems, methods, and devices are described for high accuracy molded navigation arrays. In example embodiments, a navigation array may be formed by molding, as a single component, an array having a plurality of marker regions that may include a reflective layer disposed thereon. In other embodiments, a navigation array may be formed by molding over a frame having a plurality of marker elements. In still other embodiments, a navigation array may be formed by molding over individual marker elements. In certain embodiments, a navigation array may be formed by molding a frame with a plurality of voids and subsequently molding marker elements into each void where the marker elements may include a reflective layer disposed thereon. In some embodiments, a navigation array may be formed by molding a plurality of marker elements on a frame and disposing a reflective layer on the marker elements.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 16, 2022
    Inventor: Hervé Collet
  • Patent number: 11278355
    Abstract: A modular fluoro-navigation instrument including a base made of a substantially radiotransparent material. The base is intended to be rigidly secured to a patient's bone and a tracker rigidly attachable to the base. The instrument has a registration phantom separate from the tracker which includes a plurality of radiopaque fiducials. The base and the registration phantom includes respective attachment members for reproducibly attaching the registration phantom to the base.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: March 22, 2022
    Assignee: ECENTIAL ROBOTICS
    Inventors: Laurence Van Beek, David Armand, Arnaud Pierre, Herve Collet, Elie Fournier, Stephane Lavallee
  • Patent number: 11253322
    Abstract: A fluoro-navigation system for navigating a tool relative to a medical image. The system includes a motorized X-ray imaging system for acquiring a plurality of images of a region of interest of a patient, the position of each image being known. Also included is a localization system, a registration phantom with a plurality of radiopaque fiducials, a tracker for being tracked by the localization system, a processor for receiving the plurality of images and for reconstructing a 3D medical image from the images using radiopaque fiducials visible in the plurality of images. Also included is base made of a substantially radiotransparent material, to be rigidly secured to a patient's bone and having a reproducible fixation system for attaching the registration phantom and/or tracker.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: February 22, 2022
    Assignee: ECENTIAL ROBOTICS
    Inventors: Laurence Van Beek, David Armand, Arnaud Pierre, Herve Collet, Elie Fournier, Stephane Lavallee
  • Publication number: 20220047329
    Abstract: The invention relates to a surgical system for cutting an anatomical structure (F, T) of a patient according to at least one target plane defined in a coordinate system of the anatomical structure, comprising: (i) a robotic device (100) comprising: —an end effector (2), —an actuation unit (4) having at least three motorized degrees of freedom, configured for adjusting a position and orientation of the end effector (2) relative to each target plane, —a passive planar mechanism (24) connecting the terminal part (40) of the actuation unit (4) to the end effector (2); (ii) a tracker (203) rigidly attached to the end effector (2), (iii) a tracking unit (200) configured to determine in real time the pose of the end effector (2) with respect to the coordinate system of the anatomical structure, a control unit (300) configured to determine the pose of the end effector with respect to the target plane and to control the actuation unit so as to bring the cutting plane into alignment with the target plane.
    Type: Application
    Filed: December 8, 2017
    Publication date: February 17, 2022
    Inventors: Stéphane Lavallee, Daniel Girardeau-Montaut, Hervé Collet, Anthony Leandri, Nicolas Demanget
  • Publication number: 20210361295
    Abstract: The invention relates to a surgical system for cutting an anatomical structure (F, T) of a patient according to at least one target plane defined in a coordinate system of the anatomical structure, comprising: i) a robotic device (100) comprising: —a cutting tool, —an actuation unit (4) comprising from three to five motorized degrees of freedom, said actuation unit comprising at least one portion having a parallel architecture comprising a base (40) and a platform (41) selectively orientable relative to the base (40) according to at least two of said motorized degrees of freedom, —a planar mechanism (24) connecting a terminal part of the actuation unit (4) to the cutting tool (2), ii) a passive articulated lockable holding arm (51) supporting the actuation unit, iii) a tracking unit (200) configured to determine in real time the pose of the cutting plane with respect to the coordinate system of the anatomical structure, iv) a control unit (300) configured to determine the pose of the cutting plane with respec
    Type: Application
    Filed: December 7, 2017
    Publication date: November 25, 2021
    Applicant: Orthotaxy
    Inventors: Stéphane Lavallee, Nicolas Demanget, Hervé Collet, Daniel Girardeau-Montaut, Laurence Chabanas
  • Publication number: 20210353311
    Abstract: The invention relates to a surgical system for cutting an anatomical structure (F, T) of a patient according to at least one target plane defined in a coordinate system of the anatomical structure, comprising: (i) a robotic device (100) comprising: —a cutting tool, —an actuation unit (4) having a serial architecture comprising from three to five motorized degrees of freedom, at least two of said motorized degrees of freedom being rotational degrees of freedom about respective rotation axes that are substantially orthogonal to each other, configured for adjusting a position and orientation of the cutting tool relative to each target plane, —a planar mechanism connecting the last segment of the actuation unit to the cutting tool; (ii) a passive articulated lockable holding arm (5) supporting the actuation unit (4); (iii) a tracking unit (200) configured to determine in real time the pose of the cutting plane with respect to the coordinate system of the anatomical structure, (iv) a control unit (300) configured
    Type: Application
    Filed: October 25, 2017
    Publication date: November 18, 2021
    Inventors: Stéphane Lavallee, Nicolas Demanget, Hervé Collet, Daniel Girardeau-Montaut, Laurence Chabanas, François Urvoy
  • Patent number: 11147649
    Abstract: The invention relates to a device for minimally invasive attachment of a tracker (20) and/or a registration phantom (30) to a patient's bone, comprising a base (10) made of a substantially radiotransparent material, characterized in that the base (10) comprises: a support surface (11) intended to face the bone, a plurality of non-parallel through holes (14) for passing a respective percutaneous pin (2) through the base (10); at least one slot (15) extending from an edge of the base (10) in a direction transversal to the through holes (14), said slot (15) passing throughout the base (10) until the support surface (11) and being intended to engage a percutaneous pin (2) implanted into the patient's bone so as to allow the base (10) to slide along said pin (2); and a reproducible fixation system for attaching the tracker (20) and/or the registration phantom (30) to the base.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: October 19, 2021
    Assignee: ECENTIAL ROBOTICS
    Inventors: Laurence Van Beek, David Armand, Arnaud Pierre, Herve Collet, Elie Fournier, Stephane Lavallee
  • Publication number: 20210113294
    Abstract: The disclosure relates to a method for disassembling a marker array (10) comprising at least three optical markers (100) arranged according a determined array geometry configured to be tracked by a localization camera from an array fixation (11) to which the marker array (10) is connected, the method comprising, prior to or during disconnecting the marker array (10) from the array fixation (11), actuating a mechanism configured to selectively modify the array geometry so as to unable tracking of the marker array by the localization camera.
    Type: Application
    Filed: October 20, 2020
    Publication date: April 22, 2021
    Inventors: Hervé Collet, Nicolas Demanget, Elie Fournier, Alasdair Mercer
  • Publication number: 20200093500
    Abstract: The invention relates to a surgical system comprising: (i) a handheld device (100) comprising: a base (1), an end-effector (2) for mounting a surgical tool or tool guide, an actuation unit (4) connected to said base (1) and end-effector (2), a support unit (5) designed to make contact with the treated part to be treated or an adjacent region to provide a partial mechanical link between the base (1) or end-effector (2), and the part to be treated, (ii) a tracking unit (200), (iii) a control unit (300) configured to: (a) compute in real time an optimized path of the end-effector, (b) detect whether said computed path of the tool or end-effector can be achieved without changing the pose of the base, and, if not, determine a possible repositioning of the base with respect to the part to be treated, (c) configure the actuation unit so as to move the end-effector according to said computed path, and (d) iterate steps (a) to (c) until the planned volume has been treated, (iv) a user interface (400).
    Type: Application
    Filed: September 24, 2019
    Publication date: March 26, 2020
    Inventors: Stéphane Lavallee, Matias De La Fuente Klein, Klaus Radermacher, Annegret Niesche, Meiko Muller, Gregory Dez, Herve Collet
  • Patent number: 10441294
    Abstract: The invention relates to a surgical system comprising: (i) a handheld device (100) comprising: a base (1), an end-effector (2) for mounting a surgical tool or tool guide, an actuation unit (4) connected to said base (1) and end-effector (2), a support unit (5) designed to make contact with the treated part to be treated or an adjacent region to provide a partial mechanical link between the base (1) or end-effector (2), and the part to be treated, (ii) a tracking unit (200), (iii) a control unit (300) configured to: (a) compute in real time an optimized path of the end-effector, (b) detect whether said computed path of the tool or end-effector can be achieved without changing the pose of the base, and, if not, determine a possible repositioning of the base with respect to the part to be treated, (c) configure the actuation unit so as to move the end-effector according to said computed path, and (d) iterate steps (a) to (c) until the planned volume has been treated, (iv) a user interface (400).
    Type: Grant
    Filed: June 11, 2014
    Date of Patent: October 15, 2019
    Assignee: DePuy Ireland Unlimited Company
    Inventors: Stephane Lavallee, Matias De La Fuente Klein, Klaus Radermacher, Annegret Niesche, Meiko Muller, Gregory Dez, Herve Collet
  • Publication number: 20180311011
    Abstract: The invention relates to a device for minimally invasive attachment of a tracker (20) and/or a registration phantom (30) to a patient's bone, comprising a base (10) made of a substantially radiotransparent material, characterized in that the base (10) comprises: a support surface (11) intended to face the bone, a plurality of non-parallel through holes (14) for passing a respective percutaneous pin (2) through the base (10); at least one slot (15) extending from an edge of the base (10) in a direction transversal to the through holes (14), said slot (15) passing throughout the base (10) until the support surface (11) and being intended to engage a percutaneous pin (2) implanted into the patient's bone so as to allow the base (10) to slide along said pin (2); and a reproducible fixation system for attaching the tracker (20) and/or the registration phantom (30) to the base.
    Type: Application
    Filed: October 14, 2016
    Publication date: November 1, 2018
    Inventors: Laurence VAN BEEK, David ARMAND, Arnaud PIERRE, Herve COLLET, Elie FOURNIER, Stephane LAVALLEE
  • Publication number: 20180296278
    Abstract: The invention relates to a fluoro-navigation system for navigating a tool relative to a medical image, comprising: a motorized X-ray imaging system adapted to acquire a plurality of images of a region of interest of a patient, the position of each image being known in a referential of the imaging system, a localization system; a registration phantom (30) comprising a plurality of radiopaque fiducials (31); a tracker (20) adapted for being tracked by the localization system; a processor configured for receiving the plurality of images acquired by the motorized X-ray imaging system and for reconstructing a 3D medical image from said images using radiopaque fiducials (31) visible in the plurality of images; a base (10) made of a substantially radiotransparent material, the base (10) being adapted to be rigidly secured to a patient's bone (B) and comprising a reproducible fixation system for attaching said registration phantom (30) and/or said tracker (20).
    Type: Application
    Filed: October 14, 2016
    Publication date: October 18, 2018
    Inventors: Laurence VAN BEEK, David ARMAND, Arnaud PIERRE, Herve COLLET, Elie FOURNIER, Stephane LAVALLEE
  • Publication number: 20180280092
    Abstract: The invention relates to a modular fluoro-navigation instrument (1) comprising: a base (10) made of a substantially radiotransparent material, the base being intended to be rigidly secured to a patient's bone (B); a tracker (20) rigidly attachable to the base (10); characterized in that said instrument further comprises a registration phantom (30) separate from the tracker (20) comprising a plurality of radiopaque fiducials (31) and in that the base (10) and the registration phantom (30) comprise respective fixation means (12, 32) for reproducibly attaching the registration phantom to the base.
    Type: Application
    Filed: October 14, 2016
    Publication date: October 4, 2018
    Inventors: Laurence VAN BEEK, David ARMAND, Arnaud PIERRE, Herve COLLET, Elie FOURNIER, Stephane LAVALLEE
  • Patent number: 9700337
    Abstract: The invention relates to a surgical instrument comprising: a distal tool (5) securely fastened at a distal end of a rotation shaft (4) and rotatably mounted on and in the extension of a distal member (30) rotatably mounted at an end of an elongated arm (3), an comprising motorized means (20) for actuating the distal motion of the distal tool (5) and further comprising controlling means (21) for a user to control the motorized means (20); a handle (1) extending from the actuation unit (2) and comprising a lever (11) mechanically coupled to the distal tool (5) for actuation of said distal tool (5); characterized in that the handle (1) has a non-axially-symmetric shape and is mounted on and in the extension of the actuation unit (2) with coupling means (12,22) enabling rotation of the handle (1) relative to the actuation unit (2) around the longitudinal axis, and wherein the controlling means (21) are adapted to be operated by the user whatever the rotational position of the handle (1) relative to the actuat
    Type: Grant
    Filed: May 12, 2016
    Date of Patent: July 11, 2017
    Assignee: ENDOCONTROL
    Inventors: Clement Vidal, Herve Collet, Patrick Henri
  • Publication number: 20160249944
    Abstract: The invention relates to a surgical instrument comprising: a distal tool (5) securely fastened at a distal end of a rotation shaft (4) and rotatably mounted on and in the extension of a distal member (30) rotatably mounted at an end of an elongated arm (3), an comprising motorized means (20) for actuating the distal motion of the distal tool (5) and further comprising controlling means (21) for a user to control the motorized means (20); a handle (1) extending from the actuation unit (2) and comprising a lever (11) mechanically coupled to the distal tool (5) for actuation of said distal tool (5); characterized in that the handle (1) has a non-axially-symmetric shape and is mounted on and in the extension of the actuation unit (2) with coupling means (12,22) enabling rotation of the handle (1) relative to the actuation unit (2) around the longitudinal axis, and wherein the controlling means (21) are adapted to be operated by the user whatever the rotational position of the handle (1) relative to the actuat
    Type: Application
    Filed: May 12, 2016
    Publication date: September 1, 2016
    Inventors: Clement Vidal, Herve Collet, Patrick Henri
  • Patent number: 9375206
    Abstract: The invention relates to a surgical instrument comprising: —a distal tool (5) securely fastened to a distal end of a rotation shaft (4) and rotatably mounted on and in the extension of a distal member (30) rotatably mounted at an end of an elongated arm (3), —an comprising motorized means (20) for actuating the distal motion of the distal tool (5) and further comprising controlling means (21) for a user to control the motorized means (20); —a handle (1) extending from the actuation unit (2) and comprising a lever (11) mechanically coupled to the distal tool (5) for actuation of said distal tool (5); characterized in that the handle (1) has a non-axially-symmetric shape and is mounted on and in the extension of the actuation unit (2) with coupling means (12, 22) enabling rotation of the handle (1) relative to the actuation unit (2) around the longitudinal axis, and wherein the controlling means (21) are adapted to be operated by the user whatever the rotational position of the handle (1) relative to the actuat
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: June 28, 2016
    Assignee: ENDOCONTROL
    Inventors: Clement Vidal, Herve Collet, Patrick Henri