Patents by Inventor Hidayat Kisdarjono

Hidayat Kisdarjono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10411286
    Abstract: An alkali/oxidant battery is provided with an associated method of creating battery capacity. The battery is made from an anode including a reduced first alkali metal such as lithium (Li), sodium (Na), and potassium (K), when the battery is charged. The battery's catholyte includes an element, in the battery charged state, such as nickel oxyhydroxide (NiOOH), manganese(IV) (oxide Mn(4+)O2), or iron(III) oxyhydroxide Fe(3+)(OH)3), with the alkali metal hydroxide. An alkali metal ion permeable separator is interposed between the anolyte and the catholyte. For example, if the catholyte includes nickel(II) hydroxide (Ni(OH)2) in a battery discharged state, then it includes NiOOH in a battery charged state. To continue the example, the anolyte may include dissolved lithium ions (Li+) in a discharged state, with solid phase reduced Li formed on the anode in the battery charged state.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: September 10, 2019
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David R. Evans
  • Patent number: 9774066
    Abstract: A battery and an associated method are provided for generating power using an air cathode battery with a slurry anode. The method provides a battery with an air cathode separated from an anode current collector by an electrically insulating separator and an extrusion gap. The anode current collector extruder has a first plate with a plurality of slurry outlet perforations, and a sleeve having a first partition immediately adjacent to the extruder first plate, with a plurality of slurry inlet perforations. Active slurry is provided under pressure to an extruder inlet, and the extruder first plate slurry outlet perforations are selectively aligned with sleeve first partition slurry inlet perforations. Active slurry deposits are formed in the extrusion gap to mechanically charge the battery. In the discharge position, the sleeve moves so that the perforations no longer align, and slurry in the extruder is isolated from slurry in the extrusion gap.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: September 26, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Hidayat Kisdarjono, Yuhao Lu, David Evans, Jong-Jan Lee
  • Patent number: 9680152
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+/3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Grant
    Filed: June 6, 2016
    Date of Patent: June 13, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Patent number: 9608264
    Abstract: An air cathode battery is provided that uses a zinc slurry anode with carbon additives. The battery is made from an air cathode and a zinc slurry anode. The zinc slurry anode includes zinc particles, an alkaline electrolyte, with a complexing agent and carbon additives in the alkaline electrolyte. A water permeable ion-exchange membrane and electrolyte chamber separate the zinc slurry from the air cathode. The carbon additives may, for example, be graphite, carbon fiber, carbon black, or carbon nanoparticles. The proportion of carbon additives to zinc is in the range of 2.5 to 10% by weight. The proportion of alkaline electrolyte in the zinc slurry is in the range of 50 to 80% by volume.
    Type: Grant
    Filed: August 29, 2014
    Date of Patent: March 28, 2017
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Hidayat Kisdarjono, Yuhao Lu, Jong-Jan Lee, David Evans, Long Wang
  • Publication number: 20160285098
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+/3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Application
    Filed: June 6, 2016
    Publication date: September 29, 2016
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Publication number: 20160268622
    Abstract: An alkali/oxidant battery is provided with an associated method of creating battery capacity. The battery is made from an anode including a reduced first alkali metal such as lithium (Li), sodium (Na), and potassium (K), when the battery is charged. The battery's catholyte includes an element, in the battery charged state, such as nickel oxyhydroxide (NiOOH), manganese(IV) (oxide Mn( 4+)O2), or iron(III) oxyhydroxide Fe(3+)(OH)3), with the alkali metal hydroxide. An alkali metal ion permeable separator is interposed between the anolyte and the catholyte. For example, if the catholyte includes nickel(II) hydroxide (Ni(OH)2) in a battery discharged state, then it includes NiOOH in a battery charged state. To continue the example, the anolyte may include dissolved lithium ions (Li+) in a discharged state, with solid phase reduced Li formed on the anode in the battery charged state.
    Type: Application
    Filed: May 4, 2016
    Publication date: September 15, 2016
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David R. Evans
  • Patent number: 9385370
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+/3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: July 5, 2016
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Publication number: 20160111705
    Abstract: An air cathode battery is provided with a slurry anode. An anode cavity is interposed between the air cathode interior surfaces, with an anode compartment occupying the anode cavity. The anode compartment has a first wall and a second wall, one or both capable of movement. An anode current collector pouch has walls adjacent to interior surfaces of the anode compartment. A zinc slurry occupies an expandable region in the anode compartment between the anode current collector pouch and the anode compartment wall interior surfaces. The anode current collector pouch first wall and second wall contract towards each other in response to expansion in the volume of zinc slurry. In one aspect, the anode compartment first and second walls expand away from each other in response to expansion in the volume of zinc oxide. A replenishable electrolyte source may be used to provide electrolyte to the anode cavity.
    Type: Application
    Filed: December 21, 2015
    Publication date: April 21, 2016
    Inventors: Hidayat Kisdarjono, Alexander Bauer, Gregory Stecker, Wei Pan
  • Patent number: 9159502
    Abstract: A supercapacitor is provided with a method for fabricating the supercapacitor. The method provides dried hexacyanometallate particles having a chemical formula AmM1xM2y(CN)6.pH2O with a Prussian Blue hexacyanometallate, crystal structure, where A is an alkali or alkaline-earth cation, and M1 and M2 are metals with 2+ or 3+ valance positions. The variable m is in the range of 0.5 to 2, x is in the range of 0.5 to 1.5, y is in the range of 0.5 to 1.5, and p is in the range of 0 to 6. The hexacyanometallate particles are mixed with a binder and electronic conductor powder, to form a cathode comprising AmM1xM2y(CN)6.pH2O. The method also forms an activated carbon anode and a membrane separating the cathode from the anode, permeable to A and A? cations. Finally, an electrolyte is added with a metal salt including A? cations. The electrolyte may be aqueous.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: October 13, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Sean Andrew Vail, Hidayat Kisdarjono, Jong-Jan Lee
  • Publication number: 20150287991
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+/3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 8, 2015
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Patent number: 9099718
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: August 4, 2015
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Publication number: 20150207191
    Abstract: A battery and an associated method are provided for generating power using an air cathode battery with a slurry anode. The method provides a battery with an air cathode separated from an anode current collector by an electrically insulating separator and an extrusion gap. The anode current collector extruder has a first plate with a plurality of slurry outlet perforations, and a sleeve having a first partition immediately adjacent to the extruder first plate, with a plurality of slurry inlet perforations. Active slurry is provided under pressure to an extruder inlet, and the extruder first plate slurry outlet perforations are selectively aligned with sleeve first partition slurry inlet perforations. Active slurry deposits are formed in the extrusion gap to mechanically charge the battery. In the discharge position, the sleeve moves so that the perforations no longer align, and slurry in the extruder is isolated from slurry in the extrusion gap.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Inventors: Hidayat Kisdarjono, Yuhao Lu, David Evans, Jong-Jan Lee
  • Publication number: 20140370401
    Abstract: An air cathode battery is provided that uses a zinc slurry anode with carbon additives. The battery is made from an air cathode and a zinc slurry anode. The zinc slurry anode includes zinc particles, an alkaline electrolyte, with a complexing agent and carbon additives in the alkaline electrolyte. A water permeable ion-exchange membrane and electrolyte chamber separate the zinc slurry from the air cathode. The carbon additives may, for example, be graphite, carbon fiber, carbon black, or carbon nanoparticles. The proportion of carbon additives to zinc is in the range of 2.5 to 10% by weight. The proportion of alkaline electrolyte in the zinc slurry is in the range of 50 to 80% by volume.
    Type: Application
    Filed: August 29, 2014
    Publication date: December 18, 2014
    Inventors: Hidayat Kisdarjono, Yuhao Lu, Jong-Jan Lee, David Evans, Long Wang
  • Patent number: 8896065
    Abstract: A bottom-contacted top gate (TG) thin film transistor (TFT) with independent field control for off-current suppression is provided, along with an associated fabrication method. The method provides a substrate, and forms source and drain regions overlying the substrate, each having a channel interface top surface. A channel is interposed between the source and drain, with source and drain contact regions immediately overlying the source/drain (S/D) interface top surfaces, respectively. A first dielectric layer is formed overlying the source, drain, and channel. A first gate is formed overlying the first dielectric, having a drain sidewall located between the contact regions. A second dielectric layer is formed overlying the first gate and first dielectric. A second gate overlies the second dielectric, located over the drain contact region.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: November 25, 2014
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Hidayat Kisdarjono, Apostolos T. Voutsas
  • Publication number: 20140075745
    Abstract: An alkali/oxidant battery is provided with an associated method of creating battery capacity. The battery is made from an anode including a reduced first alkali metal such as lithium (Li), sodium (Na), and potassium (K), when the battery is charged. The battery's catholyte includes an element, in the battery charged state, such as nickel oxyhydroxide (NiOOH), magnesium(IV) (oxide Mn(4+)O2), or iron(III) oxyhydroxide (Fe(3+)(OH)3), with the alkali metal hydroxide. An alkali metal ion permeable separator is interposed between the anolyte and the catholyte. For example, if the catholyte includes nickel(II) hydroxide (Ni(OH)2) in a battery discharged state, then it includes NiOOH in a battery charged state. To continue the example, the anolyte may include dissolved lithium ions (Li+) in a discharged state, with solid phase reduced Li formed on the anode in the battery charged state.
    Type: Application
    Filed: November 27, 2013
    Publication date: March 20, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David R. Evans
  • Publication number: 20140038000
    Abstract: A metal flow-through battery is provided, with ion exchange membrane. The flow-through battery is primarily made up of an anode slurry, a cathode slurry, and a hydroxide (OH?) anion exchange membrane interposed between the anode slurry and the cathode slurry, The anode and cathode slurries are both aqueous slurries. The anode slurry includes a metal, and associated oxides, such as magnesium (Mg), aluminum (Al), iron (Fe), copper (Cu), or zinc (Zn). The cathode slurry includes a chemical agent such as nickel oxyhydroxide (NiOOH), nickel (II) hydroxide (Ni(OH)2), manganese oxide (MnO2), manganese (II) oxide (Mn2O3), iron (III) oxide (Fe2O3), iron (III) oxide (FeO), iron (III) hydroxide (Fe(OH)), or combinations of the above-referenced materials. A method is also provided for forming a voltage potential across a flow-through battery.
    Type: Application
    Filed: September 30, 2013
    Publication date: February 6, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Yuhao Lu, Jong-Jan Lee, Hidayat Kisdarjono
  • Publication number: 20130257378
    Abstract: A transition metal hexacyanoferrate (TMH) cathode battery is provided. The battery has a AxMn[Fe(CN)6]y.zH2O cathode, where the A cations are either alkali or alkaline-earth cations, such as sodium or potassium, where x is in the range of 1 to 2, where y is in the range of 0.5 to 1, and where z is in the range of 0 to 3.5. The AxMn[Fe(CN)6]y.zH2O has a rhombohedral crystal structure with Mn2+/3+ and Fe2+3+ having the same reduction/oxidation potential. The battery also has an electrolyte, and anode made of an A metal, an A composite, or a material that can host A atoms. The battery has a single plateau charging curve, where a single plateau charging curve is defined as a constant charging voltage slope between 15% and 85% battery charge capacity. Fabrication methods are also provided.
    Type: Application
    Filed: January 29, 2013
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Hidayat Kisdarjono, Jong-Jan Lee, David Evans
  • Publication number: 20130257389
    Abstract: A supercapacitor is provided with a method for fabricating the supercapacitor. The method provides dried hexacyanometallate particles having a chemical formula AmM1xM2y(CN)6.pH2O with a Prussian Blue hexacyanometallate, crystal structure, where A is an alkali or alkaline-earth cation, and M1 and M2 are metals with 2+ or 3+ valance positions. The variable m is in the range of 0.5 to 2, x is in the range of 0.5 to 1.5, y is in the range of 0.5 to 1.5, and p is in the range of 0 to 6. The hexacyanometallate particles are mixed with a binder and electronic conductor powder, to form a cathode comprising AmM1xM2y(CN)6.pH2O. The method also forms an activated carbon anode and a membrane separating the cathode from the anode, permeable to A and A? cations. Finally, an electrolyte is added with a metal salt including A? cations. The electrolyte may be aqueous.
    Type: Application
    Filed: September 4, 2012
    Publication date: October 3, 2013
    Inventors: Yuhao Lu, Sean Andrew Vail, Hidayat Kisdarjono, Jong-Jan Lee
  • Patent number: 7872309
    Abstract: A recessed-gate thin-film transistor (RG-TFT) with a self-aligned lightly doped drain (LDD) is provided, along with a corresponding fabrication method. The method deposits an insulator overlying a substrate and etches a trench in the insulator. The trench has a bottom and sidewalls. An active silicon (Si) layer is formed overlying the insulator and trench, with a gate oxide layer over the active Si layer. A recessed gate electrode is then formed in the trench. The TFT is doped and LDD regions are formed in the active Si layer overlying the trench sidewalls. The LDD regions have a length that extends from a top of the trench sidewall, to the trench bottom, with a doping density that decreases in response to the LDD length. Alternately stated, the LDD length is directly related to the depth of the trench.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: January 18, 2011
    Assignee: Sharp Labratories of America, Inc.
    Inventors: Paul J. Schuele, Mark A. Crowder, Apostolos T. Voutsas, Hidayat Kisdarjono
  • Publication number: 20100237355
    Abstract: A thin film transistor with a large on-current and a reduced off-current is provided with high fabrication efficiency. A thin film transistor of the present invention includes a gate electrode; and a microcrystalline silicon layer containing a microcrystalline silicon, the microcrystalline silicon layer having an upper surface and a lower surface which are parallel to a substrate surface and an end surface which extends between the upper surface and the lower surface; first and second contact layers containing impurities which are provided so as to be in contact with the microcrystalline silicon layer; a source electrode which is in contact with the first contact layer; and a drain electrode which is in contact with the second contact layer, wherein at least one of the first and second contact layers is in contact with the microcrystalline silicon layer only at the end surface without being in contact with any of the upper surface and the lower surface.
    Type: Application
    Filed: November 10, 2008
    Publication date: September 23, 2010
    Inventors: Masao Moriguchi, Yuichi Saito, Hidayat Kisdarjono