Patents by Inventor Hideaki Arita

Hideaki Arita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10852163
    Abstract: A rotation angle detection device including: a rotor; a stator including “b” (b?3) magnetic detection portions (MDPs) each including a bias magnetic field generation portion and a magnetic detection element (MDE); and a rotation angle processor calculating a rotation angle of the rotor based on a detection by the (MDEs). The rotor has convex and concave portions (CCPs), which change in “x” cycles for a mechanical angle 360 (“x”?1) to make the MDEs possible to obtain a sine wave. There are arranged “b” MDPs along a circumferential direction of the stator for each cycle of the CCPs, which are arranged at intervals of a mechanical angle 360×(n×b+m)/(x×b), where “n” (n?0) represents, by a number of cycles, a deviation amount of each of the MDPs from a reference position in the circumferential direction, and “m” (1?m?“b”) represents a position of a MDP in an arrangement order.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 1, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hitoshi Isoda, Yoshihiro Miyama, Tatsuo Nishimura, Hideaki Arita, Shinji Nishimura, Koji Nishizawa
  • Publication number: 20200341014
    Abstract: The present invention provides a method for evaluating the pharmacological action of HGF that utilizes a PD marker in which fluctuation is recognized by administration of hepatocyte growth factor (HGF) in a broader range of subjects. A method for evaluating the pharmacodynamic action of HGF is provided. The aforementioned evaluation method is characterized in that it comprises a step of measuring the ApoA4 level in a biological sample collected from a test subject who was administered HGF. According to the present invention, a kit for evaluating the pharmacodynamic action of HGF comprising an anti-ApoA4 antibody is further provided.
    Type: Application
    Filed: March 16, 2017
    Publication date: October 29, 2020
    Inventors: Mai Kimura, Sotaro Motoi, Takashi Obara, Katsuhiro Moriya, Hideaki Ogasawara, Yoshihisa Arita, Tetsu Kawano
  • Patent number: 10819169
    Abstract: An axial gap rotating electrical machine, including: a rotor; a stator which includes a stator iron core, the stator iron core including: a core back having a hollow-disc shape; and a plurality of teeth, which axially extend from one axial surface of the core back, and are arrayed circumferentially, the plurality of teeth having distal ends axially facing the rotor; a housing having a bottom on which another axial surface of the core back, which is a surface axially opposite to the one axial surface of the core back, is superposed; and a fixing member, which is fixed to the bottom at a position radially shifted from the core back, and is configured to press the one axial surface of the core back toward the bottom.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 27, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Toru Ogawa, Hideaki Arita, Akihiro Daikoku
  • Publication number: 20200295694
    Abstract: A rotating electric machine apparatus including: a rotating electric machine (REM) including a rotor and a stator; an inverter device including an inverter circuit (IC) for driving the REM and an inverter control unit (ICU) for controlling the IC; a detector, in which a first antenna is connected to a resonance circuitry, which is mounted to the REM and has a resonance characteristic that changes depending on a change in a physical quantity; and a detection processor receiving a response radio wave indicating a detection result of the change in the physical quantity from the first antenna while transmitting a transmission radio wave at a set carrier frequency from a second antenna, and comparing the detection result and the set value, to thereby obtain an abnormal state in the REM. The ICU controls output of the IC in accordance with an abnormal state signal from the detection processor.
    Type: Application
    Filed: November 24, 2017
    Publication date: September 17, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoshihiro MIYAMA, Hideaki ARITA, Junji HORI, Tomohira TAKAHASHI, Kenzo MAKINO, Masaya INOUE
  • Publication number: 20200284664
    Abstract: A temperature detection device includes: a detection processing unit configured to transmit a transmission radio wave, simultaneously receive a response radio wave corresponding to the transmission radio wave, and detect whether a temperature of an object to be measured is normal or abnormal based on the response radio wave; and a temperature sensing unit configured to receive the transmission radio wave and transmit the response radio wave responding to the transmission radio wave. The detection processing unit calculates, from the response radio wave received via a second antenna, an amplitude, a phase, or a quadrature phase amplitude of the response radio wave and compares the temperature of the object to be measured to a temperature determined in advance based on a result of the calculation.
    Type: Application
    Filed: November 24, 2017
    Publication date: September 10, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kenzo MAKINO, Hideaki ARITA, Masaya INOUE, Junji HORI, Hiroshi ARAKI, Yoshitsugu SAWA, Wataru TSUJITA
  • Patent number: 10742079
    Abstract: Magnets are disposed between adjacent first claw portions and second claw portions so as to protrude toward a second end in an axial direction from tips of the first claw portions and so as to protrude toward a first end in the axial direction from tips of the second claw portions, magnet holding members include a base portion that covers a radially outer surface of the magnets, and the base portion includes a high magnetic resistance portion that is disposed in a direction that is perpendicular to a direction from the first claw portions toward the second claw portions and parallel to the radially outer surface of the magnets so as to cross a magnetic path from the first claw portions toward the second claw portions in a region between the adjacent first claw portions and second claw portions.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 11, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Norihiro Watanabe, Hideaki Arita, Taiga Komatsu, Tomoya Uchimura, Toru Ogawa
  • Patent number: 10488173
    Abstract: The magnetic resistance of a magnetic path that passes through a coil (6) is increased by magnetically dividing a stator core into a plurality of divided cores (4, 5) in such a manner that the magnetic flux of a permanent magnet (7) flows through the magnetic path when a projection (82) of a plunger (8) magnetically connects the divided cores (4, 5), hence the magnetic resistance of the magnetic path that passes through the coil (6) rapidly changes due to a positional relationship between a gap between the divided cores (4, 5) and the plunger (8), and the magnetic flux that flows through the magnetic path rapidly changes, and moreover a large back electromotive force is produced.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: November 26, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masafumi Sugawara, Toru Ogawa, Satoshi Tesen, Hideaki Arita, Akihiro Daikoku
  • Patent number: 10468947
    Abstract: A motor according to the present invention includes: a stator core that surrounds an outer circumference of a rotor, and that includes: a yoke portion; and a plurality of tooth portions in which tip portions protrude radially inward toward a central axis of the rotor from an inner circumferential surface of the yoke portion; a heat sink that is disposed so as to face a first end surface of the stator core in an axial direction of the stator core; a stator coil that includes phase coil portions that are configured using conducting wires that are mounted to the stator core; and a coil fixing member that is disposed on coil end portions of the phase coil portions, that fixes the coil end portions in a state of surface contact with the heatsink.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: November 5, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro Miyama, Hideaki Arita, Akihiro Daikoku
  • Patent number: 10469003
    Abstract: One end of each of phase conductors wound around a stator core in a wave winding arrangement is connected to a positive electrode terminal of a DC power supply through a first positive electrode side switch and is connected to a negative electrode terminal of the DC power supply through a second negative electrode side switch. The other end of the phase conductor is connected to the negative electrode terminal of the DC power supply through a first negative electrode side switch and is connected to the positive electrode terminal of the DC power supply through a second positive electrode side switch. The first positive electrode side switch, the second negative electrode side switch, the first negative electrode side switch, and the second positive electrode side switch are controlled by a controller, whereby amplitude and phase of current passing through each of the phase conductors are individually controlled.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: November 5, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro Miyama, Hideaki Arita, Akihiro Daikoku, Kan Akatsu, Hiroki Hijikata
  • Publication number: 20190250011
    Abstract: A rotation angle detection device including: a rotor; a stator including “b” (b?3) magnetic detection portions (MDPs) each including a bias magnetic field generation portion and a magnetic detection element (MDE); and a rotation angle processor calculating a rotation angle of the rotor based on a detection by the (MDEs). The rotor has convex and concave portions (CCPs), which change in “x” cycles for a mechanical angle 360 (“x”?1) to make the MDEs possible to obtain a sine wave. There are arranged “b” MDPs along a circumferential direction of the stator for each cycle of the CCPs, which are arranged at intervals of a mechanical angle 360×(n×b+m)/(x×b), where “n” (n?0) represents, by a number of cycles, a deviation amount of each of the MDPs from a reference position in the circumferential direction, and “m” (1?m?“b”) represents a position of a MDP in an arrangement order.
    Type: Application
    Filed: October 31, 2016
    Publication date: August 15, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hitoshi ISODA, Yoshihiro MIYAMA, Tatsuo NISHIMURA, Hideaki ARITA, Shinji NISHIMURA, Koji NISHIZAWA
  • Patent number: 10365124
    Abstract: An electromagnetic actuator (1) includes sensor magnets (21a, 21b) disposed correspondingly to plungers (11a, 11b), respectively. The electromagnetic actuator (1) further includes a sensor core (22) made of a magnetic material and disposed in a position through which magnetic fluxes from the plurality of sensor magnets (21a, 21b) can flow, and a magnetic sensor (23) that is disposed in a part of the sensor core (22) through which the magnetic fluxes of the plurality of sensor magnets (21a, 21b) can flow in common, and that detects the magnetic flux, which varies in accordance with respective positions of the plurality of plungers (11a, 11b).
    Type: Grant
    Filed: June 4, 2015
    Date of Patent: July 30, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masafumi Sugawara, Toru Ogawa, Hideaki Arita, Shoji Ishikawa, Hitoshi Yoshizumi, Satoshi Tesen
  • Patent number: 10361603
    Abstract: In a mechanically and electrically integrated driving apparatus, a common coolant flow channel for cooling a motor unit and an inverter unit is disposed inside a wall portion of a frame unit. Power modules are placed in close contact with an inner wall surface of the frame unit. A bracket that is separate from the frame unit is fitted into the frame unit. A space inside the frame unit is divided by the bracket into: a space in which the motor unit is housed; and a space in which the inverter unit is housed.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: July 23, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Junichi Aizawa, Yoshihiro Miyama, Akihiro Daikoku, Norihiro Watanabe, Hideaki Arita, Shota Hanioka, Shigetoshi Ipposhi
  • Patent number: 10312846
    Abstract: A pole-number-changing rotary electric machine includes: a rotary electric machine; an n-group inverter; and a control unit for controlling the n-group inverter, wherein the control unit controls current phases of a current flowing through stator coils such that a current phase degree of freedom, which is a number of current phases per pole pair controllable by the n-group inverter, is equal to a number of groups n×a number of phases m/2 at a time of high polarity driving and the number of groups n×the number of phases m at a time of low polarity driving, where the number of groups n is a multiple of 4 and the number of phases m is a natural number of 3 or more and relatively prime to the number of groups n.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: June 4, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yuki Hidaka, Taiga Komatsu, Hideaki Arita, Akihiro Daikoku, Moriyuki Hazeyama
  • Publication number: 20190140497
    Abstract: Magnets are disposed between adjacent first claw portions and second claw portions so as to protrude toward a second end in an axial direction from tips of the first claw portions and so as to protrude toward a first end in the axial direction from tips of the second claw portions, magnet holding members include a base portion that covers a radially outer surface of the magnets, and the base portion includes a high magnetic resistance portion that is disposed in a direction that is perpendicular to a direction from the first claw portions toward the second claw portions and parallel to the radially outer surface of the magnets so as to cross a magnetic path from the first claw portions toward the second claw portions in a region between the adjacent first claw portions and second claw portions.
    Type: Application
    Filed: April 12, 2017
    Publication date: May 9, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Norihiro WATANABE, Hideaki ARITA, Taiga KOMATSU, Tomoya UCHIMURA, Toru OGAWA
  • Patent number: 10148141
    Abstract: A motor rotor structure for an electric turbo charger is manufactured at low cost with good quality by fixedly fitting, over a shaft, a rotor core having electromagnetic steel sheets pre-formed as an integrated stack. The rotor structure includes a rotor core which is rotated by a magnetic field formed by a stator in a housing; a shaft configured to rotate a compressor impeller and the rotor core together; and a bearing supporting the shaft. The rotor includes the rotor core including the electromagnetic steel sheets; a stopper portion formed at an intermediate portion of the shaft to restrict axial movement of the rotor core; and a pressing unit which presses the rotor core fitted over the shaft against the stopper portion. The pressing unit prevents a circumferential phase shift between the shaft and the rotor core by a pressing force thereof.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: December 4, 2018
    Assignee: MITSUBISHI HEAVY INDUSTRIES ENGINE & TURBOCHARGER, LTD.
    Inventors: Yukio Yamashita, Noriyuki Hayashi, Seiichi Ibaraki, Katsuyuki Osako, Motoki Ebisu, Byeongil An, Hiroshi Suzuki, Hideaki Arita, Takashi Goto, Toshihiko Miyake
  • Publication number: 20180337572
    Abstract: A rotary electric machine includes a stator core, a stator coil, and a cooling portion. The stator core includes yoke portions and a plurality of tooth portions, and surrounds an outer periphery of a rotor. Each of the tooth portions has a distal end portion protruding radially inward from an inner peripheral surface of each of the yoke portions toward a center axis of the rotor. The stator coil includes a plurality of phase coil portions formed by winding a conductive wire around the stator core. The cooling portion is provided so as to be isolated from the stator core, and is configured to cool the stator coil in contact with the stator coil.
    Type: Application
    Filed: January 19, 2017
    Publication date: November 22, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro MIYAMA, Hideaki ARITA
  • Publication number: 20180323663
    Abstract: An axial gap rotating electrical machine, including: a rotor; a stator which includes a stator iron core, the stator iron core including: a core back having a hollow-disc shape; and a plurality of teeth, which axially extend from one axial surface of the core back, and are arrayed circumferentially, the plurality of teeth having distal ends axially facing the rotor; a housing having a bottom on which another axial surface of the core back, which is a surface axially opposite to the one axial surface of the core back, is superposed; and a fixing member, which is fixed to the bottom at a position radially shifted from the core back, and is configured to press the one axial surface of the core back toward the bottom.
    Type: Application
    Filed: March 31, 2016
    Publication date: November 8, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Toru OGAWA, Hideaki ARITA, Akihiro DAIKOKU
  • Publication number: 20180172478
    Abstract: An electromagnetic actuator (1) includes sensor magnets (21a, 21b) disposed correspondingly to plungers (11a, 11b), respectively. The electromagnetic actuator (1) further includes a sensor core (22) made of a magnetic material and disposed in a position through which magnetic fluxes from the plurality of sensor magnets (21a, 21b) can flow, and a magnetic sensor (23) that is disposed in a part of the sensor core (22) through which the magnetic fluxes of the plurality of sensor magnets (21a, 21b) can flow in common, and that detects the magnetic flux, which varies in accordance with respective positions of the plurality of plungers (11a, 11b).
    Type: Application
    Filed: June 4, 2015
    Publication date: June 21, 2018
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masafumi SUGAWARA, Toru OGAWA, Hideaki ARITA, Shoji ISHIKAWA, Hitoshi YOSHIZUMI, Satoshi TESEN
  • Publication number: 20180175707
    Abstract: A motor according to the present invention includes: a stator core that surrounds an outer circumference of a rotor, and that includes: a yoke portion; and a plurality of tooth portions in which tip portions protrude radially inward toward a central axis of the rotor from an inner circumferential surface of the yoke portion; a heat sink that is disposed so as to face a first end surface of the stator core in an axial direction of the stator core; a stator coil that includes phase coil portions that are configured using conducting wires that are mounted to the stator core; and a coil fixing member that is disposed on coil end portions of the phase coil portions, that fixes the coil end portions in a state of surface contact with the heatsink.
    Type: Application
    Filed: April 5, 2016
    Publication date: June 21, 2018
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoshihiro MIYAMA, Hideaki ARITA, Akihiro DAIKOKU
  • Patent number: 10003233
    Abstract: In a mechanically and electrically integrated rotary electric machine, a motor portion and an inverter portion are inserted inside a cylindrical frame. The motor portion has a plurality of coils. The inverter portion has a plurality of switching elements. The coils and the switching elements are electrically connected by a connector. The connector has: an end portion connector that distributes sinusoidal electric currents from the switching elements to the respective coils; and a plurality of axial connectors that direct the sinusoidal electric currents from the switching elements to the end portion connector. The end portion connector is disposed on an end portion of the motor portion near an output shaft. The axial connectors are disposed parallel to an axial direction of the frame so as to pass from the switching elements through a mounted region of the motor portion.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: June 19, 2018
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Norihiro Watanabe, Yoshihiro Miyama, Hideaki Arita, Akihiro Daikoku