Patents by Inventor Hideaki Arita

Hideaki Arita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901771
    Abstract: A rotating electric machine includes a stator and a rotor. The rotor includes a rotor core, an axial end part, and a rotor magnet inserted into an insertion hole formed so as to pass through the rotor core. The axial end part has a recessed portion. The rotor magnet includes a first side surface and a second side surface. The first side surface is fixed to a first inner wall surface of the insertion hole. In a cross section perpendicular to the axial direction, a width of the first inner wall surface is larger than a width of the first side surface. The second side surface is fixed to a second inner wall surface of the recessed portion. In the cross section perpendicular to the axial direction, a width of the second inner wall surface is larger than a width of the second side surface.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: February 13, 2024
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yuki Hidaka, Hideaki Arita, Taiga Komatsu, Shohei Fujikura
  • Patent number: 11855570
    Abstract: This motor device includes: a motor having components including a stator and a rotor; and a controlling circuitry to control the motor. The motor is provided with temperature sensors to detect a heat transfer amount and a transfer direction about the components. The controlling circuitry includes a temperature calculator to calculate a component temperature based on a thermal circuit network from thermal resistances and heat capacities given for the components. On the basis of actual measured values of the heat transfer amount and the transfer direction obtained by the temperature sensors, the temperature calculator corrects thermal resistances and heat capacities about the components obtained on the basis of the thermal circuit network, and estimates the temperature of each component during driving of the motor.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: December 26, 2023
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kenji Kato, Hideaki Arita, Taiga Komatsu, Yuki Hidaka, Shohei Fujikura, Hiroyuki Higashino
  • Publication number: 20230396126
    Abstract: A rotator includes: a motor; and a brake that brakes the motor. The brake includes: a rotating plate that rotates with rotation of a shaft; a slide plate provided such that the slide plate can be slid in an axial direction of an axis of rotation of the motor in such a way as to approach and move away from the rotating plate; a spring that biases the slide plate toward the rotating plate; and an electromagnet capable of attracting the slide plate in a direction away from the rotating plate. The electromagnet includes: a yoke including an inner cylinder and an outer cylinder; and a brake coil. The yoke is disposed between the slide plate and a rotor in the axial direction. The brake coil is disposed adjacent to the rotor. When the brake coil is energized, the slide plate approaches both the inner cylinder and the outer cylinder.
    Type: Application
    Filed: January 14, 2021
    Publication date: December 7, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yuichiro NAKAMURA, Atsushi KINOSHITA, Hideaki ARITA
  • Publication number: 20230044024
    Abstract: A stator includes: a stator core including an annular yoke portion and a plurality of tooth portions formed on an inner side in a radial direction of the yoke portion so as to be arranged at predetermined intervals in a circumferential direction and protrude toward the inner side in the radial direction; and a winding arranged in slots formed between the tooth portions. The stator includes cooling tubes made of a nonconductive material, extending in an axial direction of the stator, and serving as flow paths for a coolant. The cooling tube has a constant outer shape along the axial direction and has a thickness that changes along the axial direction.
    Type: Application
    Filed: April 1, 2020
    Publication date: February 9, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hideaki ARITA, Yuki HIDAKA, Kenji KATO
  • Publication number: 20230032445
    Abstract: An object is to improve estimation accuracy of the internal distribution state of a rotating electric machine. The rotating electric machine includes a stator; a rotor rotatably provided on a radially inner side of the stator; a shaft provided as a rotary shaft of the rotor; a bracket supporting the shaft rotatably relative to the stator via a bearing; and a sensor provided to the shaft between the rotor and the bearing.
    Type: Application
    Filed: February 20, 2020
    Publication date: February 2, 2023
    Applicant: Mitsubishi Electric Corporation
    Inventors: Taiga KOMATSU, Yuki HIDAKA, Hideaki ARITA, Kenji KATO
  • Patent number: 11435238
    Abstract: A temperature detection device includes: a detection processing unit configured to transmit a transmission radio wave, simultaneously receive a response radio wave corresponding to the transmission radio wave, and detect whether a temperature of an object to be measured is normal or abnormal based on the response radio wave; and a temperature sensing unit configured to receive the transmission radio wave and transmit the response radio wave responding to the transmission radio wave. The detection processing unit calculates, from the response radio wave received via a second antenna, an amplitude, a phase, or a quadrature phase amplitude of the response radio wave and compares the temperature of the object to be measured to a temperature determined in advance based on a result of the calculation.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: September 6, 2022
    Assignee: Mitsubishi Electric Cornoration
    Inventors: Kenzo Makino, Hideaki Arita, Masaya Inoue, Junji Hori, Hiroshi Araki, Yoshitsugu Sawa, Wataru Tsujita
  • Patent number: 11408721
    Abstract: A rotation angle detection device, including: a rotor; a stator including one bias magnetic field generation portion (BMFGP) and magnetic detection elements; and a rotation angle calculation processor calculating a rotation angle of the rotor from detection signals of the detection elements, wherein a surface of the rotor has convex and concave portions (CCPs), which change in “x” (“x”?1) cycles for a mechanical angle of 360, and a shape of the CCPs make the detection elements possible to obtain a sine wave, and wherein “a” (“a”?2) detection elements are arranged along a circumferential direction of the stator at equal intervals for one cycle of the CCPs—so as to be opposed to the surface of the rotor, and the BMFGP extends in the circumferential direction for one cycle of the CCPs so as to overlap with the “a” detection elements.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: August 9, 2022
    Assignee: Mitsubishi Electric Corporation
    Inventors: Koji Nishizawa, Yoshihiro Miyama, Tatsuo Nishimura, Hideaki Arita, Masaya Inoue
  • Publication number: 20220200374
    Abstract: A rotating electric machine includes a stator and a rotor. The rotor includes a rotor core, an axial end part, and a rotor magnet inserted into an insertion hole formed so as to pass through the rotor core. The axial end part has a recessed portion. The rotor magnet includes a first side surface and a second side surface. The first side surface is fixed to a first inner wall surface of the insertion hole. In a cross section perpendicular to the axial direction, a width of the first inner wall surface is larger than a width of the first side surface. The second side surface is fixed to a second inner wall surface of the recessed portion. In the cross section perpendicular to the axial direction, a width of the second inner wall surface is larger than a width of the second side surface.
    Type: Application
    Filed: April 10, 2019
    Publication date: June 23, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yuki HIDAKA, Hideaki ARITA, Taiga KOMATSU, Shohei FUJIKURA
  • Publication number: 20220173689
    Abstract: This motor device includes: a motor having components including a stator and a rotor; and a controlling circuitry to control the motor. The motor is provided with temperature sensors to detect a heat transfer amount and a transfer direction about the components. The controlling circuitry includes a temperature calculator to calculate a component temperature based on a thermal circuit network from thermal resistances and heat capacities given for the components. On the basis of actual measured values of the heat transfer amount and the transfer direction obtained by the temperature sensors, the temperature calculator corrects thermal resistances and heat capacities about the components obtained on the basis of the thermal circuit network, and estimates the temperature of each component during driving of the motor.
    Type: Application
    Filed: June 3, 2019
    Publication date: June 2, 2022
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kenji KATO, Hideaki ARITA, Taiga KOMATSU, Yuki HIDAKA, Shohei FUJIKURA, Hiroyuki HIGASHINO
  • Publication number: 20210310784
    Abstract: A rotation angle detection device, including: a rotor; a stator including one bias magnetic field generation portion (BMFGP) and magnetic detection elements; and a rotation angle calculation processor calculating a rotation angle of the rotor from detection signals of the detection elements, wherein a surface of the rotor has convex and concave portions (CCPs), which change in “x” (“x”?1) cycles for a mechanical angle of 360, and a shape of the CCPs make the detection elements possible to obtain a sine wave, and wherein “a” (“a”?2) detection elements are arranged along a circumferential direction of the stator at equal intervals for one cycle of the CCPs-so as to be opposed to the surface of the rotor, and the BMFGP extends in the circumferential direction for one cycle of the CCPs so as to overlap with the “a” detection elements.
    Type: Application
    Filed: October 31, 2016
    Publication date: October 7, 2021
    Applicant: Mitsubishi Electric Corporation
    Inventors: Koji NISHIZAWA, Yoshihiro MIYAMA, Tatsuo NISHIMURA, Hideaki ARITA, Masaya INOUE
  • Patent number: 11114968
    Abstract: A rotating electric machine apparatus including: a rotating electric machine (REM) including a rotor and a stator; an inverter device including an inverter circuit (IC) for driving the REM and an inverter control unit (ICU) for controlling the IC; a detector, in which a first antenna is connected to a resonance circuitry, which is mounted to the REM and has a resonance characteristic that changes depending on a change in a physical quantity; and a detection processor receiving a response radio wave indicating a detection result of the change in the physical quantity from the first antenna while transmitting a transmission radio wave at a set carrier frequency from a second antenna, and comparing the detection result and the set value, to thereby obtain an abnormal state in the REM. The ICU controls output of the IC in accordance with an abnormal state signal from the detection processor.
    Type: Grant
    Filed: November 24, 2017
    Date of Patent: September 7, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiro Miyama, Hideaki Arita, Junji Hori, Tomohira Takahashi, Kenzo Makino, Masaya Inoue
  • Patent number: 10852163
    Abstract: A rotation angle detection device including: a rotor; a stator including “b” (b?3) magnetic detection portions (MDPs) each including a bias magnetic field generation portion and a magnetic detection element (MDE); and a rotation angle processor calculating a rotation angle of the rotor based on a detection by the (MDEs). The rotor has convex and concave portions (CCPs), which change in “x” cycles for a mechanical angle 360 (“x”?1) to make the MDEs possible to obtain a sine wave. There are arranged “b” MDPs along a circumferential direction of the stator for each cycle of the CCPs, which are arranged at intervals of a mechanical angle 360×(n×b+m)/(x×b), where “n” (n?0) represents, by a number of cycles, a deviation amount of each of the MDPs from a reference position in the circumferential direction, and “m” (1?m?“b”) represents a position of a MDP in an arrangement order.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: December 1, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Hitoshi Isoda, Yoshihiro Miyama, Tatsuo Nishimura, Hideaki Arita, Shinji Nishimura, Koji Nishizawa
  • Patent number: 10819169
    Abstract: An axial gap rotating electrical machine, including: a rotor; a stator which includes a stator iron core, the stator iron core including: a core back having a hollow-disc shape; and a plurality of teeth, which axially extend from one axial surface of the core back, and are arrayed circumferentially, the plurality of teeth having distal ends axially facing the rotor; a housing having a bottom on which another axial surface of the core back, which is a surface axially opposite to the one axial surface of the core back, is superposed; and a fixing member, which is fixed to the bottom at a position radially shifted from the core back, and is configured to press the one axial surface of the core back toward the bottom.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: October 27, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Toru Ogawa, Hideaki Arita, Akihiro Daikoku
  • Publication number: 20200295694
    Abstract: A rotating electric machine apparatus including: a rotating electric machine (REM) including a rotor and a stator; an inverter device including an inverter circuit (IC) for driving the REM and an inverter control unit (ICU) for controlling the IC; a detector, in which a first antenna is connected to a resonance circuitry, which is mounted to the REM and has a resonance characteristic that changes depending on a change in a physical quantity; and a detection processor receiving a response radio wave indicating a detection result of the change in the physical quantity from the first antenna while transmitting a transmission radio wave at a set carrier frequency from a second antenna, and comparing the detection result and the set value, to thereby obtain an abnormal state in the REM. The ICU controls output of the IC in accordance with an abnormal state signal from the detection processor.
    Type: Application
    Filed: November 24, 2017
    Publication date: September 17, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yoshihiro MIYAMA, Hideaki ARITA, Junji HORI, Tomohira TAKAHASHI, Kenzo MAKINO, Masaya INOUE
  • Publication number: 20200284664
    Abstract: A temperature detection device includes: a detection processing unit configured to transmit a transmission radio wave, simultaneously receive a response radio wave corresponding to the transmission radio wave, and detect whether a temperature of an object to be measured is normal or abnormal based on the response radio wave; and a temperature sensing unit configured to receive the transmission radio wave and transmit the response radio wave responding to the transmission radio wave. The detection processing unit calculates, from the response radio wave received via a second antenna, an amplitude, a phase, or a quadrature phase amplitude of the response radio wave and compares the temperature of the object to be measured to a temperature determined in advance based on a result of the calculation.
    Type: Application
    Filed: November 24, 2017
    Publication date: September 10, 2020
    Applicant: Mitsubishi Electric Corporation
    Inventors: Kenzo MAKINO, Hideaki ARITA, Masaya INOUE, Junji HORI, Hiroshi ARAKI, Yoshitsugu SAWA, Wataru TSUJITA
  • Patent number: 10742079
    Abstract: Magnets are disposed between adjacent first claw portions and second claw portions so as to protrude toward a second end in an axial direction from tips of the first claw portions and so as to protrude toward a first end in the axial direction from tips of the second claw portions, magnet holding members include a base portion that covers a radially outer surface of the magnets, and the base portion includes a high magnetic resistance portion that is disposed in a direction that is perpendicular to a direction from the first claw portions toward the second claw portions and parallel to the radially outer surface of the magnets so as to cross a magnetic path from the first claw portions toward the second claw portions in a region between the adjacent first claw portions and second claw portions.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: August 11, 2020
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Norihiro Watanabe, Hideaki Arita, Taiga Komatsu, Tomoya Uchimura, Toru Ogawa
  • Patent number: 10488173
    Abstract: The magnetic resistance of a magnetic path that passes through a coil (6) is increased by magnetically dividing a stator core into a plurality of divided cores (4, 5) in such a manner that the magnetic flux of a permanent magnet (7) flows through the magnetic path when a projection (82) of a plunger (8) magnetically connects the divided cores (4, 5), hence the magnetic resistance of the magnetic path that passes through the coil (6) rapidly changes due to a positional relationship between a gap between the divided cores (4, 5) and the plunger (8), and the magnetic flux that flows through the magnetic path rapidly changes, and moreover a large back electromotive force is produced.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: November 26, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Masafumi Sugawara, Toru Ogawa, Satoshi Tesen, Hideaki Arita, Akihiro Daikoku
  • Patent number: 10468947
    Abstract: A motor according to the present invention includes: a stator core that surrounds an outer circumference of a rotor, and that includes: a yoke portion; and a plurality of tooth portions in which tip portions protrude radially inward toward a central axis of the rotor from an inner circumferential surface of the yoke portion; a heat sink that is disposed so as to face a first end surface of the stator core in an axial direction of the stator core; a stator coil that includes phase coil portions that are configured using conducting wires that are mounted to the stator core; and a coil fixing member that is disposed on coil end portions of the phase coil portions, that fixes the coil end portions in a state of surface contact with the heatsink.
    Type: Grant
    Filed: April 5, 2016
    Date of Patent: November 5, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro Miyama, Hideaki Arita, Akihiro Daikoku
  • Patent number: 10469003
    Abstract: One end of each of phase conductors wound around a stator core in a wave winding arrangement is connected to a positive electrode terminal of a DC power supply through a first positive electrode side switch and is connected to a negative electrode terminal of the DC power supply through a second negative electrode side switch. The other end of the phase conductor is connected to the negative electrode terminal of the DC power supply through a first negative electrode side switch and is connected to the positive electrode terminal of the DC power supply through a second positive electrode side switch. The first positive electrode side switch, the second negative electrode side switch, the first negative electrode side switch, and the second positive electrode side switch are controlled by a controller, whereby amplitude and phase of current passing through each of the phase conductors are individually controlled.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: November 5, 2019
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshihiro Miyama, Hideaki Arita, Akihiro Daikoku, Kan Akatsu, Hiroki Hijikata
  • Publication number: 20190250011
    Abstract: A rotation angle detection device including: a rotor; a stator including “b” (b?3) magnetic detection portions (MDPs) each including a bias magnetic field generation portion and a magnetic detection element (MDE); and a rotation angle processor calculating a rotation angle of the rotor based on a detection by the (MDEs). The rotor has convex and concave portions (CCPs), which change in “x” cycles for a mechanical angle 360 (“x”?1) to make the MDEs possible to obtain a sine wave. There are arranged “b” MDPs along a circumferential direction of the stator for each cycle of the CCPs, which are arranged at intervals of a mechanical angle 360×(n×b+m)/(x×b), where “n” (n?0) represents, by a number of cycles, a deviation amount of each of the MDPs from a reference position in the circumferential direction, and “m” (1?m?“b”) represents a position of a MDP in an arrangement order.
    Type: Application
    Filed: October 31, 2016
    Publication date: August 15, 2019
    Applicant: Mitsubishi Electric Corporation
    Inventors: Hitoshi ISODA, Yoshihiro MIYAMA, Tatsuo NISHIMURA, Hideaki ARITA, Shinji NISHIMURA, Koji NISHIZAWA