Patents by Inventor Hideaki Komaki
Hideaki Komaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7500998Abstract: A gas mixture containing a fuel, water and air is supplied to one end of a reforming room, and a reformed gas containing hydrogen is discharged from the other end thereof. Two or more such reforming units are connected in series, and the upstream part of each reforming room is filled with a first catalyst which catalyzes a partial oxidation reaction in an oxygen-rich environment, and the downstream part is filled with a second catalyst which performs the reforming reaction. The gas mixture which has been heated in a heating unit passes through a distribution tube and is distributed evenly to the reforming units. The reforming room is composed of a reforming tube in which a reforming catalyst is charged, or two or more such reforming tubes, parallel to each other. After being reformed the high-temperature reformed gas is passed around the reforming tubes, and fed back to a manifold.Type: GrantFiled: February 13, 2004Date of Patent: March 10, 2009Assignee: IHI Corp.Inventors: Hideaki Komaki, Kunio Matsui
-
Publication number: 20080206117Abstract: A gas mixture containing a fuel, water and air is supplied to one end of a reforming room, and a reformed gas containing hydrogen is discharged from the other end thereof. Two or more such reforming units are connected in series, and the upstream part of each reforming room is filled with a first catalyst which catalyzes a partial oxidation reaction in an oxygen-rich environment, and the downstream part is filled with a second catalyst which performs the reforming reaction. The gas mixture which has been heated in a heating unit passes through a distribution tube and is distributed evenly to the reforming units. The reforming room is composed of a reforming tube in which a reforming catalyst is charged, or two or more such reforming tubes, parallel to each other. After being reformed the high-temperature reformed gas is passed around the reforming tubes, and fed back to a manifold.Type: ApplicationFiled: February 27, 2008Publication date: August 28, 2008Applicant: IHI CORP.Inventors: Hideaki Komaki, Katsumi Takahashi
-
Patent number: 6833126Abstract: A gas mixture containing a fuel, water and air is supplied to one end of a reforming room, and a reformed gas containing hydrogen is discharged from the other end thereof. Two or more such reforming units are connected in series, and the upstream part of each reforming room is filled with a first catalyst which catalyzes a partial oxidation reaction in an oxygen-rich environment, and the downstream part is filled with a second catalyst which performs the reforming reaction. The gas mixture which has been heated in a heating unit passes through a distribution tube and is distributed evenly to the reforming units. The reforming room is composed of a reforming tube in which a reforming catalyst is charged, or two or more such reforming tubes, parallel to each other. After being reformed the high-temperature reformed gas is passed wound the reforming tubes, and fed back to a manifold.Type: GrantFiled: August 29, 2001Date of Patent: December 21, 2004Assignee: Industries Co., Ltd.Inventors: Hideaki Komaki, Kunio Matsui
-
Publication number: 20040159046Abstract: A gas mixture 2 containing a fuel, water and air is supplied to one end of a reforming room 6, and a reformed gas 4 containing hydrogen is discharged from the other end thereof. Two or more such reforming units are connected in series, and the upstream part of each reforming room is filled with a first catalyst 8a which catalyzes a partial oxidation reaction in an oxygen-rich environment, and the downstream part is filled with a second catalyst 8b which performs the reforming reaction. The gas mixture 102 which has been heated in a heating unit 104 passes through a distribution tube 108 and is distributed evenly to the reforming units 114. The reforming room is composed of a reforming tube 130 in which a reforming catalyst 112 is charged, or two or more such reforming tubes, parallel to each other. After being reformed the high-temperature reformed gas 118 is passed around the reforming tubes, and fed back to a manifold 116.Type: ApplicationFiled: February 13, 2004Publication date: August 19, 2004Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd.Inventors: Hideaki Komaki, Katsumi Takahashi
-
Publication number: 20020141917Abstract: A gas mixture 2 containing a fuel, water and air is supplied to one end of a reforming room 6, and a reformed gas 4 containing hydrogen is discharged from the other end thereof. Two or more such reforming units are connected in series, and the upstream part of each reforming room is filled with a first catalyst 8a which catalyzes a partial oxidation reaction in an oxygen-rich environment, and the downstream part is filled with a second catalyst 8b which performs the reforming reaction. The gas mixture 102 which has been heated in a heating unit 104 passes through a distribution tube 108 and is distributed evenly to the reforming units 114. The reforming room is composed of a reforming tube 130 in which a reforming catalyst 112 is charged, or two or more such reforming tubes, parallel to each other. After being reformed the high-temperature reformed gas 118 is passed around the reforming tubes, and fed back to a manifold 116.Type: ApplicationFiled: August 29, 2001Publication date: October 3, 2002Applicant: Ishikawajima-Harima Heavy Industries Co., Ltd.Inventors: Hideaki Komaki, Katsumi Takahashi, Kunio Matsui
-
Patent number: 6296959Abstract: An air supply device for a fuel cell is disclosed which is provided with a displacement compressor (10) for supplying pressurized air as an air source to a cathode through an air supply line connected to the cathode inlet side of the fuel cell (I) so that a burned gas obtained by burning an anode exhaust gas (AG) discharged from an anode of the fuel cell may be conducted to the intake side of an exhaust gas turbine (8) for driving the displacement compressor, and so that air may be supplied to the cathode (2) by driving the displacement compressor (10) with the exhaust gas turbine that operates with the burned gas of the anode exhaust gas. A heat exchanger (22) vaporizes fuel fed to the anode of the fuel cell. The heat exchanger takes in exhaust gas from the turbine and outputs a high temperature exhaust gas, which is conducted to the intake of the turbine.Type: GrantFiled: January 29, 1999Date of Patent: October 2, 2001Assignee: Ishikawajima-Harima Heavy Industries Co., Ltd.Inventors: Shigeru Takabe, Hideaki Komaki
-
Publication number: 20010007724Abstract: An air supply device for a fuel cell is disclosed which is provided with a displacement compressor 10 for supplying pressurized air as an air source to a cathode through an air supply line connected to the cathode inlet side of the fuel cell I so that a burned gas obtained by burning an anode exhaust gas AG discharged from an anode of the fuel cell may be conducted to the intake side of an exhaust gas turbine 8 for driving the displacement compressor, and so that air may be supplied to the cathode 2 by driving the displacement compressor 10 with the exhaust gas turbine that operates with the burned gas of the anode exhaust gas.Type: ApplicationFiled: January 29, 1999Publication date: July 12, 2001Inventors: SHIGERU TAKABE, HIDEAKI KOMAKI
-
Patent number: 5201611Abstract: A pressure equalizer for use for storing, generating and dispensing gas from substantially thin walled tanks at great depth beneath the sea has a gas generating tank contains a low-temperature, liquified gas which upon the application of heat generates a high-pressure gas which is stored in a gas storage tank into and out of which sea water freely flows through the bottom. A gas supply line is connected at one end by branches to the tops of the respective tanks and at the other end to a device utilizing gas generated in the gas generating tank.Type: GrantFiled: January 16, 1992Date of Patent: April 13, 1993Assignee: Ishikawajima-Harima Jukogyo Kabushiki KaishaInventors: Hideaki Komaki, Shinji Taira, Tadashi Shibue