Patents by Inventor Hideaki Nagata

Hideaki Nagata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240105737
    Abstract: Provided is a display device with extremely high resolution, a display device with higher display quality, a display device with improved viewing angle characteristics, or a flexible display device. Same-color subpixels are arranged in a zigzag pattern in a predetermined direction. In other words, when attention is paid to a subpixel, another two subpixels exhibiting the same color as the subpixel are preferably located upper right and lower right or upper left and lower left. Each pixel includes three subpixels arranged in an L shape. In addition, two pixels are combined so that pixel units including subpixel are arranged in matrix of 3×2.
    Type: Application
    Filed: December 11, 2023
    Publication date: March 28, 2024
    Inventors: Hisao IKEDA, Kouhei TOYOTAKA, Hideaki SHISHIDO, Hiroyuki MIYAKE, Kohei YOKOYAMA, Yasuhiro JINBO, Yoshitaka DOZEN, Takaaki NAGATA, Shinichi HIRASA
  • Patent number: 10920473
    Abstract: The present invention prevents or suppresses a grommet from detaching from a ball socket. The grommet that has a cover for covering a harness led and extended outside a cap of the ball socket is configured by including a boot part that covers the harness inside the cap and that is formed into a bottomed cylindrical shape opened to an electric motor side, a connection cylindrical part that is disposed inside a harness insertion hole that connects the boot part and the cover and in which the harness is inserted, and a falling-out prevention part that is formed in the boot part that engages the cap and that restricts the movement of the boot part toward the harness insertion hole side.
    Type: Grant
    Filed: July 25, 2017
    Date of Patent: February 16, 2021
    Assignee: U-SHIN LTD.
    Inventors: Mikio Yamagata, Hideaki Nagata
  • Patent number: 10859083
    Abstract: A scroll compressor includes a slider including a cylindrical portion supported by a rocking bearing provided on an orbiting scroll so that it rotates freely, and a balance weight portion connected to the cylindrical portion. When a direction opposite to an eccentric direction of the orbiting scroll is a counter eccentric direction and a direction of a central axis of the rocking bearing is a Z-axis direction, the balance weight portion includes a main weight portion provided at a position distant from a center of rotation of the slider in the counter eccentric direction, and a counter-weight portion provided at a position spaced away from the orbiting scroll than a position of a center of the rocking bearing in the Z-axis direction and at a position distant from the center of rotation of the slider in the eccentric direction.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 8, 2020
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yuji Takamura, Tomokazu Matsui, Masayuki Kakuda, Hideaki Nagata
  • Patent number: 10745958
    Abstract: A door opening and closing apparatus for a vehicle includes a support member interposed between a body and a door of the vehicle and expandable and shrinkable so as to enable holding of the door at an open position. The support member includes a first housing unit having an electric motor driving mechanism and a second housing unit integrally joined to the first housing unit. The second housing unit includes an outer cylinder, an inner cylinder disposed concentrically in the outer cylinder and engaged with the outer cylinder by fitting engagement in a movable manner relative to the outer cylinder, a spindle connected to the electric motor driving mechanism, and a spindle driving mechanism for moving the inner cylinder relative to the outer cylinder in an axial direction due to rotation of the spindle.
    Type: Grant
    Filed: November 16, 2016
    Date of Patent: August 18, 2020
    Assignee: U-SHIN LTD.
    Inventors: Mikio Yamagata, Hideaki Nagata
  • Publication number: 20190169901
    Abstract: The present invention prevents or suppresses a grommet from detaching from a ball socket. The grommet that has a cover for covering a harness led and extended outside a cap of the ball socket is configured by including a boot part that covers the harness inside the cap and that is formed into a bottomed cylindrical shape opened to an electric motor side, a connection cylindrical part that is disposed inside a harness insertion hole that connects the boot part and the cover and in which the harness is inserted, and a falling-out prevention part that is formed in the boot part that engages the cap and that restricts the movement of the boot part toward the harness insertion hole side.
    Type: Application
    Filed: July 25, 2017
    Publication date: June 6, 2019
    Inventors: Mikio Yamagata, Hideaki Nagata
  • Publication number: 20190063436
    Abstract: A scroll compressor includes a slider including a cylindrical portion supported by a rocking bearing provided on an orbiting scroll so that it rotates freely, and a balance weight portion connected to the cylindrical portion. When a direction opposite to an eccentric direction of the orbiting scroll is a counter eccentric direction and a direction of a central axis of the rocking bearing is a Z-axis direction, the balance weight portion includes a main weight portion provided at a position distant from a center of rotation of the slider in the counter eccentric direction, and a counter-weight portion provided at a position spaced away from the orbiting scroll than a position of a center of the rocking bearing in the Z-axis direction and at a position distant from the center of rotation of the slider in the eccentric direction.
    Type: Application
    Filed: March 28, 2017
    Publication date: February 28, 2019
    Inventors: Yuji TAKAMURA, Tomokazu MATSUI, Masayuki KAKUDA, Hideaki NAGATA
  • Patent number: 10208750
    Abstract: A posture control unit (contact portion) that controls a posture of a balance weight-equipped slider so that a slider portion of the balance weight-equipped slider maintains the posture parallel to an orbiting bearing is provided at a position corresponding to a central portion in an axial direction of the orbiting bearing between an eccentric direction-side side surface of an eccentric shaft portion of a rotary shaft and an inner wall surface of a slide hole facing the side surface.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: February 19, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Raito Kawamura, Shin Sekiya, Shinichi Wakamoto, Mihoko Shimoji, Hideaki Nagata
  • Publication number: 20170145727
    Abstract: A door opening and closing apparatus for a vehicle includes a support member interposed between a body and a door of the vehicle and expandable and shrinkable so as to enable holding of the door at an open position. The support member includes a first housing unit having an electric motor driving mechanism and a second housing unit integrally joined to the first housing unit. The second housing unit includes an outer cylinder, an inner cylinder disposed concentrically in the outer cylinder and engaged with the outer cylinder by fitting engagement in a movable manner relative to the outer cylinder, a spindle connected to the electric motor driving mechanism, and a spindle driving mechanism for moving the inner cylinder relative to the outer cylinder in an axial direction due to rotation of the spindle.
    Type: Application
    Filed: November 16, 2016
    Publication date: May 25, 2017
    Inventors: Mikio YAMAGATA, Hideaki NAGATA
  • Publication number: 20170082109
    Abstract: A posture control unit (contact portion 6f) that controls a posture of a balance weight-equipped slider 5 so that a slider portion 5a of the balance weight-equipped slider 5 maintains the posture parallel to an orbiting bearing 2d is provided at a position corresponding to a central portion in an axial direction of the orbiting bearing 2d between an eccentric direction-side side surface of an eccentric shaft portion 6a of a rotary shaft 6 and an inner wall surface of a slide hole 5aa facing the side surface.
    Type: Application
    Filed: May 8, 2015
    Publication date: March 23, 2017
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Raito KAWAMURA, Shin SEKIYA, Shinichi WAKAMOTO, Mihoko SHIMOJI, Hideaki NAGATA
  • Patent number: 9395105
    Abstract: In a refrigeration cycle device, a design volume ratio, obtained by dividing a stroke volume of a sub-compressor by a stroke volume of an expander, is set to be smaller than (DE/DC)×(hE?hF)/(hB?hA). With an operating efficiency being the maximum in an operating range allowed to be set of the refrigeration cycle device, DE is a density of a refrigerant, which has flowed out from a radiator, DC is a density of the refrigerant, which has flowed out from an evaporator, hE is a specific enthalpy of the refrigerant flowing into the expander, hF is a specific enthalpy of the refrigerant, which has flowed out from the expander, hA is a specific enthalpy of the refrigerant sucked by a main compressor, and hB is a specific enthalpy of the refrigerant at an intermediate position of a compression process of the main compressor.
    Type: Grant
    Filed: September 1, 2011
    Date of Patent: July 19, 2016
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yusuke Shimazu, Keisuke Takayama, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Patent number: 9353975
    Abstract: A refrigeration cycle apparatus includes a refrigeration cycle formed by a first compressor, a radiator, an expander that expands a refrigerant that has passed through the radiator, and an evaporator. A bypass piping has one end connected to a discharge piping of the expander and the other end connected to a suction piping of the first compressor. A pressure sensor and a temperature sensor detect the suction pressure and suction temperature of the expander as physical quantities of the refrigerant to be sucked into the expander. A bypass valve controls the flow rate of the refrigerant. A control device determines the appropriate discharge pressure of the expander on the basis of the suction pressure and suction temperature of the expander, and opens the bypass valve when the pressure at which the expander discharges the refrigerant is higher than the determined appropriate discharge pressure.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 31, 2016
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Patent number: 9222706
    Abstract: A refrigeration cycle apparatus achieves efficient operation by constantly recovering power in a wide operating range. The refrigeration cycle apparatus regulates a pressure of a high pressure side by changing either one or both of an opening degree of the intermediate-pressure bypass valve and an opening degree of the pre-expansion valve on the basis of a density ratio that is obtained from an inflow refrigerant density of the expander and an inflow refrigerant density of the sub-compressor in an actual operating state and a design volume ratio that has been expected at the time of design and that is obtained from a stroke volume of the sub-compressor, a stroke volume of the expander, and a ratio of a flow rate of the refrigerant flowing to the sub-compressor.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: December 29, 2015
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Patent number: 9121278
    Abstract: Disclosed is a positive displacement expander equipped with an expansion mechanism in which power is generated using fluid energy produced while a high-pressure fluid, supplied to a plurality of expansion chambers partitioned by an orbiting scroll or a rolling piston, is being expanded and decompressed. The expander includes a communicating pipe that allows each of the expansion chambers to communicate with an expander discharge side and an opening and closing device disposed on the communicating pipe. When supply of the high-pressure fluid is stopped, the opening and closing device is opened by the time when high and low pressures between each of the expansion chambers and the expander discharge side are equalized, thus stopping the orbiting scroll or the rolling piston at a predetermined position so that an expander obtains sufficient driving force when resuming.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: September 1, 2015
    Assignee: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Publication number: 20140157811
    Abstract: In a refrigeration cycle device, a design volume ratio, obtained by dividing a stroke volume of a sub-compressor by a stroke volume of an expander, is set to be smaller than (DE/DC)×hE?hF)/(hB?hA). With an operating efficiency being the maximum in an operating range allowed to be set of the refrigeration cycle device, DE is a density of a refrigerant, which has flowed out from a radiator, DC is a density of the refrigerant, which has flowed out from an evaporator, hE is a specific enthalpy of the refrigerant flowing into the expander, hF is a specific enthalpy of the refrigerant, which has flowed out from the expander, hA is a specific enthalpy of the refrigerant sucked by a main compressor, and hB is a specific enthalpy of the refrigerant at an intermediate position of a compression process of the main compressor.
    Type: Application
    Filed: September 1, 2011
    Publication date: June 12, 2014
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yusuke Shimazu, Keisuke Takayama, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Patent number: 8511112
    Abstract: A refrigeration cycle apparatus which is capable of performing matching of the volumetric flow rate without performing pre-expansion it obtained. A refrigeration circuit includes a compression unit including a main compressor and a second compressor, a gas cooler, an expansion mechanism, and an evaporator interconnected with pipes, and a sub-compression mechanism driven by power recovered by the expansion mechanism, a suction side of the sub-compression mechanism is connected to a compression process of the compression unit, a discharge side of the sub-compression mechanism is connected to an inlet side of the gas cooler, and flow rate of refrigerant flowing into the sub-compression mechanism is controlled.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: August 20, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Naofumi Takenaka, Takashi Okazaki, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Patent number: 8475149
    Abstract: A scroll fluid machine that suppresses fluctuations in a port aperture area during each revolution of an orbiting scroll. Suction ports for sucking in a working fluid are disposed on a second base plate to have openings in a vicinity of a winding start end portion of a second spiral tooth, and near an inward facing surface of the second spiral tooth at a position separated by an involute angle approximately 90° from the winding start end portion of the second spiral tooth. Discharge ports for discharging the working fluid are disposed on a first base plate to have openings in a vicinity of a winding start end portion of a first spiral tooth, and near an inward facing surface of the first spiral tooth at a position separated by an involute angle approximately 90° from the winding start end portion of the first spiral tooth.
    Type: Grant
    Filed: January 5, 2009
    Date of Patent: July 2, 2013
    Assignee: Mitsubishi Electric Corporation
    Inventors: Masayuki Kakuda, Fumihiko Ishizono, Hideaki Nagata, Mihoko Shimoji, Shin Sekiya, Toshihide Koda
  • Publication number: 20120318001
    Abstract: A refrigeration cycle apparatus achieves efficient operation by constantly recovering power in a wide operating range. The refrigeration cycle apparatus regulates a pressure of a high pressure side by changing either one or both of an opening degree of the intermediate-pressure bypass valve and an opening degree of the pre-expansion valve on the basis of a density ratio that is obtained from an inflow refrigerant density of the expander and an inflow refrigerant density of the sub-compressor in an actual operating state and a design volume ratio that has been expected at the time of design and that is obtained from a stroke volume of the sub-compressor, a stroke volume of the expander, and a ratio of a flow rate of the refrigerant flowing to the sub-compressor.
    Type: Application
    Filed: March 25, 2010
    Publication date: December 20, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Publication number: 20120321497
    Abstract: Disclosed is a positive displacement expander equipped with an expansion mechanism in which power is generated using fluid energy produced while a high-pressure fluid, supplied to a plurality of expansion chambers partitioned by an orbiting scroll or a rolling piston, is being expanded and decompressed. The expander includes a communicating pipe that allows each of the expansion chambers to communicate with an expander discharge side and an opening and closing device disposed on the communicating pipe. When supply of the high-pressure fluid is stopped, the opening and closing device is opened by the time when high and low pressures between each of the expansion chambers and the expander discharge side are equalized, thus stopping the orbiting scroll or the rolling piston at a predetermined position so that an expander obtains sufficient driving force when resuming.
    Type: Application
    Filed: January 19, 2010
    Publication date: December 20, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Publication number: 20120174610
    Abstract: A refrigeration cycle apparatus includes a refrigeration cycle formed by a first compressor, a radiator, an expander that expands a refrigerant that has passed through the radiator, and an evaporator. A bypass piping has one end connected to a discharge piping of the expander and the other end connected to a suction piping of the first compressor. A pressure sensor and a temperature sensor detect the suction pressure and suction temperature of the expander as physical quantities of the refrigerant to be sucked into the expander. A bypass valve controls the flow rate of the refrigerant. A control device determines the appropriate discharge pressure of the expander on the basis of the suction pressure and suction temperature of the expander, and opens the bypass valve when the pressure at which the expander discharges the refrigerant is higher than the determined appropriate discharge pressure.
    Type: Application
    Filed: September 24, 2009
    Publication date: July 12, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Keisuke Takayama, Yusuke Shimazu, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura
  • Publication number: 20120167606
    Abstract: In a refrigeration cycle apparatus that recovers power in an expander, obtaining a refrigeration cycle apparatus that is capable of reliably starting up the expander compared to conventional refrigeration cycle apparatuses. The refrigeration cycle apparatus includes a refrigerant circuit having a first compressor, a radiator, an expander and an evaporator connected in series with a piping; and a second compressor disposed between the first compressor and the radiator, the second compressor being driven by power recovered by the expander. The second compressor being a positive displacement compressor. The refrigeration cycle apparatus, further including a pressure regulating device (a bypass and an on-off valve) that maintains a pressure on a discharge side of the second compressor to be lower than a pressure on a suction side of the second compressor at least until the second compressor is started up.
    Type: Application
    Filed: October 7, 2009
    Publication date: July 5, 2012
    Applicant: Mitsubishi Electric Corporation
    Inventors: Yusuke Shimazu, Keisuke Takayama, Masayuki Kakuda, Hideaki Nagata, Takeshi Hatomura